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Abstract This paper addresses the problem of finding a static 
virtual topology design and flow routing in transparent optical 
WDM networks under a time-varying (multi-hour) traffic 
demand. Four variants of the problem are considered, using 
fixed or dynamically adaptable (i.e., variable) flow routing, 
which can be splittable or unsplittable. Our main objective is 
to minimize the number of transceivers needed which make up 
for the main network cost. We formulate the problem variants 
as exact ILPs (Integer Linear Programs) and MILPs (Mixed 
ILPs). For larger problem instances, we also propose a family 
of heuristics based on the concept of domination between 
traffic matrices. This concept provides the theoretical 
foundations for a set of techniques proposed to reduce the 
problem complexity. We present a lower bound to the network 
cost for the case in which the virtual topology could be 
dynamically reconfigured along time. This allows us to assess 
the limit on the maximum possible benefit that could be 
achieved by using optical reconfigurable equipment. 
Extensive tests have been conducted, using both synthetically 
generated and real-traced traffic demands. In the cases 
studied, results show that combining variable routing with 

splittable flows obtains a significant, although moderate, cost 
reduction. The maximum cost reduction achievable with 
reconfigurable virtual topologies was shown to be negligible 
compared to the static case in medium and high loads. 
 

Keywords Virtual Topology Design ·  Flow routing · 
Periodic traffic · Traffic domination 
 

1  Introduction  
Transparent optical networks based on Wavelength 
Division Multiplexing (WDM) technology have 
been established as the enabling technology for 
today’s high-speed backbone networks. In such 
networks, a set of all-optical connections, called 
lightpaths, are set up between pairs of nodes, 
forming a virtual topology on top of the physical 
interconnection of optical fibers. Each lightpath can 
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be routed over multiple physical links and occupies 
a single transmission wavelength on each traversed 
fiber. Traffic carried over the lightpaths is 
electronically processed only at the source and 
destination nodes, where it is said to be ‘added’ or 
‘dropped’, while transparently traversing 
intermediate ones. Thus, each lightpath occupies 
one E/O transmitter at the ingress node, and one 
O/E receiver at the egress node.  

The optical part of the switching nodes enabling 
WDM channels to be transparently switched from 
the input to the output ports is called the 
Wavelength Switch Fabric (WSF). The WSF can be 
realized as a fixed or a reconfigurable component. 
In the former, the interconnection of input and 
output ports is manually hard-wired and cannot 
change over time. In the latter, the lightpaths can be 
established, rerouted and torn down in tens of 
milliseconds, according to the commands received 
from management and/or the control plane. 
Naturally, reconfigurable equipment implies an 
increase in equipment costs and signaling 
complexity. 

Given a set of nodes and a traffic demand, 
determining the set of lightpaths which are to be 
established between input-output node pairs is 
called virtual topology design (VTD). To establish 
such a set of lightpaths, it is necessary to find for 
each a sequence of traversed fibers and assign to it a 
wavelength subject to certain constraints. This is 
referred to as the Routing and Wavelength 
Assignment problem (RWA). Solving the RWA 
problem for the set of lightpaths which comprises 
the virtual topology certifies the feasibility of the 
network plan with respect to wavelength 
availability and physical impairments. However, the 
disparities in the network cost among different 
RWA solutions for the same virtual topology are 
not significant. Consequently, we assume that the 
links in the network are equipped with a sufficient 
number of wavelengths and that physical-layer 
constraints do not apply. Thus, the associated RWA 
constraints can be removed from the network 
planning optimization problem simplifying its 
complexity. Such assumptions can realistically 
depict several network scenarios, e.g. in metro-area 

optical networks with an over-dimensioned fiber 
plant. In this paper we consider a network where the 
previous assumptions hold, and thus eliminate the 
RWA constraints from our analysis. 

We can classify VTD planning problems 
according to the associated traffic demand 
variations along time, as static, scheduled or 
dynamic. The first two assume offline planning, 
while the third infers online provisioning. In the 
static traffic case, the traffic demand is constant 
along time. Therefore, the virtual topology obtained 
by solving the VTD problem is also constant where 
the lightpaths are established semi-permanently 
based on the estimated constant traffic. In the 
scheduled traffic case, the traffic demand varies 
along time, but its variation is assumed to be 
accurately known in advance. The problem can be 
solved either by finding a static virtual topology 
capable of handling all the given traffic variations 
over time, or by finding a succession of virtual 
topologies dynamically reconfigured in accordance 
with the traffic changes. The former can be realized 
using non-reconfigurable components, while the 
latter requires reconfigurable WSFs. Finally, in the 
dynamic traffic case, lightpaths are established as 
the connection requests arrive, with no a priori 
deterministic knowledge of connection request 
arrival time. 

In this paper, we consider offline virtual topology 
planning in transparent optical networks given a 
multi-hour traffic demand, i.e. for known or 
estimated traffic variations. We denote this problem 
as MH-VTD (Multi-Hour Virtual Topology 
Design). The traffic demand over a certain period of 
time is modeled as a temporal series of traffic 
matrices, each  estimating the demand in a discrete 
time slot. This can be used, e.g., to model periodic 
traffic as it changes over the course of a week due 
to peak hours [1]. We assume that the virtual 
topology can not be changed along time, i.e. we 
determine a static set of lightpaths capable of 
routing all traffic as it varies over all time slots. 
Thus, the network can be based on non-
reconfigurable optical switching equipment. This 
assumption is in line with the current capabilities of 
the control plane in transparent optical networks 
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and avoids dynamic ‘hot’ reconfigurations of the 
virtual topology which can imply short but relevant 
traffic disruptions. 

In summary, our target problem is finding an 
optimal fixed virtual topology, and the associated 
traffic flow routing on top of it, which is capable of 
fully carrying the given traffic in all time slots. The 
cost to minimize is measured in terms of the 
number of lightpaths in the network, which define 
the number of transceivers (transmitters and 
receivers) needed. This number is commonly 
considered as a network cost criterion in planning 
studies [2],[3],[4]. 

We are interested in investigating the trade-offs 
that arise in the MH-VTD planning problem with 
respect to two different criteria:  

 
• Considering fixed or variable routing of 

higher layer flows on top of the static 
virtual topology over time. A fixed flow 
routing indicates that the traffic from a 
source node to a destination node is 
always transmitted via the same set of 
lightpaths. On the contrary, variable 
routing imposes no such constraints, but at 
a cost of higher signaling and network 
management complexity. 

• Considering splittable or unsplittable flow 
routing. Unsplittable flow routing means 
that all the traffic between a given input-
output pair at any given time is 
constrained to traverse the same sequence 
of nodes. If the traffic between a node pair 
exceeds the capacity of a single lightpath, 
the unsplittable traffic must be routed over 
a set of multiple lightpaths which are all-
optically routed across the same sequence 
of nodes. However, if splittable flow 
routing is assumed, the traffic between 
two nodes can be split, where different 
fractions of the traffic can be routed over a 
different sequence of lightpaths not 
necessarily traversing the same nodes. 
Naturally, splittable routing allows for 
improved traffic balancing, but at a cost of 
increased signaling overhead. 

 
The two categorizations described above jointly 

define four different scenarios under study: fixed or 
variable routing (FR and VR, respectively), with 
splittable or unsplittable flows (s and u 
respectively). We denote these four variants of the 
problem as MH-VTD-FRs, MH-VTD-FRu, MH-
VTD-VRs, MH-VTD- VRu. 

In this paper, two approaches are proposed to 
address the MH-VTD problem and its variants. The 
first approach is based on exact ILP (Integer Linear 
Programming) and MILP (Mixed ILP) 
formulations, yielding optimal solutions to the 
problem. Clearly, all variants of the MH-VTD 
problem are NP-hard, as the static virtual topology 
design problem is [5]. For larger problem instances 
we propose a family of heuristic methods based on 
the concept of traffic domination [6], in conjunction 
with a heuristic for the static virtual topology design 
problem. Also, we propose a lower bound on the 
number of transceivers in the network for the case 
in which the virtual topology can be changed along 
time (and, thus, reconfigurable WSFs must be 
used). This lower bound is valid to evaluate the 
maximum cost saving in number of transceivers that 
could be achieved if the virtual topology could be 
reconfigured along time. 

We present extensive results using synthesized 
traffic variations with various traffic loads and 
randomness factors, for networks of up to 8 nodes. 
In addition, we conduct tests for larger problem 
instances considering a time series of 672 traffic 
matrices obtained from a real traffic trace in the 
Abilene network ¡Error! No se encuentra el 
origen de la referencia.. The results are used to 
validate the heuristic methods, as well as extract 
interesting conclusions regarding the usefulness of 
dynamic flow routing, splittable flow routing, and 
the maximum benefits that can be obtained from 
allowing a dynamic reconfiguration of the virtual 
topology. 

The rest of the paper is organized as follows. 
Section 2 presents the state-of-the-art for virtual 
topology design under a time-varying traffic 
demand. In Section 3 we provide optimal MILP 
formulations for the ST-VDT problem with 
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fixed/variable routing and (un)splittable flows. 
Section 4 presents our heuristic approach, which 
includes a reduction technique based on the concept 
of domination among traffic matrices. Section 5 
describes the conducted experiments and obtained 
results. Finally, Section 6 concludes the paper. 

 

2  State of the art 
The periodic nature of traffic has been confirmed 
with real traffic traces, such as the Abilene 
backbone network trace [7], making the expected 
traffic load in a network fairly predictable. While 
multi-hour planning has been studied in the past for 
different communication networks (see [8] for 
details), to the best of our knowledge, very few 
works exist which study periodic or known traffic 
variations in the context of transparent optical 
networks planning. 

In [9] the authors consider the problem of finding 
a static VTD based on scheduled traffic demands 
with fixed and variable flow routing assuming 
splittable flows. They analyze various objectives, 
such as the average packet hop distance, 
congestion, and total number of lightpaths, and 
propose a hybrid one combining all three. The 
objective to minimize lightpaths is equivalent to 
minimizing transceivers since each lightpath 
requires one transmitter at the source node, and one 
receiver at the destination node. However, the work 
in [9] assumes a given number of transmitters and 
receivers per node and, thus, does not investigate 
the maximal possible savings in this respect. 
Furthermore, they assume at most one lightpath 
between each pair of nodes, which is very 
restrictive. They provide formulations using the 
various objectives and test on 7 and 10 node 
networks for 3 time slots. In their results, flow 
rerouting achieved a 7% savings in the number of 
lightpaths. We extend these findings by proposing a 
heuristic approach which can handle a large number 
of time instances, and give MILP formulations with 
no constraints on the number transceivers and 
number of lightpaths between node pairs. As such, 
we can assess the maximal benefit which can be 
achieved with respect to the number of lightpaths 
needed for fixed vs. variable routing. Furthermore, 

we investigate the results of a real traffic trace and 
compare with problem variants assuming 
unsplittable routing. 

In [10], the multilayer problem of mapping a set 
of lightpaths onto the physical topology and 
mapping a set of LSPs (Label Switched Paths) for 
packet switched traffic over the set of lightpaths is 
considered. They assume known traffic variations 
and consider that one LSP is required for each flow. 
They study the case of designing a static virtual 
topology with fixed flow routing and unsplittable 
flows, assuming that a single lightpath capacity is 
sufficient for each LSP. They give a MILP 
formulation, as well as a decomposition heuristic 
method. They compare the results with those 
obtained for a reconfigurable approach, i.e. finding 
a succession of virtual topologies by solving the 
multilayer problem for each time slot separately. 
Their objective is a combination of the amount of 
average electronic packet processing along time, 
the number of optically switched wavelengths and 
the number of lightpaths in the network. 

Their results indicate that establishing a static 
virtual topology with fixed routing obtains 
solutions very close to those in which the virtual 
topology can be dynamically reconfigured over 
time. They also compare their results with a method 
in which the temporal sequence of traffic matrices 
is reduced to one matrix: the traffic between nodes 
(i,j) is assumed to be the maximum along time of 
the traffic between those nodes. The static VTD 
problem is then solved for this matrix using a MILP 
formulation.  

The approach that we follow in this paper is 
similar in the sense that an effort is first made to 
reduce the temporal sequence of traffic matrices to 
one unique matrix. Then, we solve the problem for 
that matrix. However, our approach applies the 
concept of traffic domination [6] to give a 
theoretical foundation to this process. It allows us 
to apply separately the concepts of so-called weak 
and total domination in order to solve the specific 
cases of variable and fixed flow routing, 
respectively. From this, we design a family of 
heuristics which reduce the temporal sequence of 
traffic matrices to one, and then apply a heuristic 
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for solving the VTD problem which is more 
scalable than solving the exact MILP. 

In [11] and [12], we investigated the Multi-Hour 
VTD problem for the cases of variable and 
splittable flow routing for networks with 
reconfigurable and non-reconfigurable equipment. 
With reconfigurable equipment, the virtual 
topology can be dynamically changed over time, 
while the case with non-reconfigurable components 
maps to the MH-VTD-VRs problem variant 
described in this paper. MILP formulations [11] and 
a tabu search heuristic approach [12] are proposed 
but further testing is needed to more completely 
assess the benefits and trade-offs associated with 
using reconfigurable components. In this paper, we 
consider only the case of establishing a static non-
reconfigurable virtual topology, but compare 
various possibilities for flow routing (i.e., 
fixed/variable; (un)splittable) in order to assess 
their cost-effectiveness. We extend the formulations 
given in [11] for the MH-VTD-VRs problem to 
describe all the mentioned variations of flow 
routing constraints and propose new heuristics 
based on traffic matrix domination to solve larger 
problem instances. 

 

3  ILP/MILP-Based Approach 
In this section, we propose exact ILP/MILP 
formulations for the four problem variants 
investigated. Let N be the number of nodes in the 
network, and T the number of time intervals for 
which the traffic is defined. Since we are dealing 
with periodic traffic, we assume that the last time 
interval t=T is followed by the first time interval 
t=1. Let dsd

t, s,d={1,...,N}, t={1,...,T} denote the 
traffic demand (measured in Gbps) from node s to 
node d, during time interval t. Let C denote the 
lightpath capacity in Gbps.  

3.1 MH-VTD-FR-s/u problems 

The decision variables of the problem are: 
• .},{0,1,2,... =),( ,...,N}  i,j = {1jiu The number 

of lightpaths from node i to node j. 
• . ],1,0[),,,( {1,...,N}i,j ,s,d=  dsjif ∈ The fraction 

of the total traffic flow from node s to node 

d  that is routed on  the existing lightpaths 
from node i to node j.  
 

The problem formulation is given by (1). 
 

∑
= }...,,1{,

),(min
Nji

jiu  (1a) 
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(1c) 

MH-VTD-FRu:  

}...,,1{,,,},1,0{),,,( Ndsjidsjif =∀=  (1d) 

 
The objective function (1a) searches for a virtual 

topology that minimizes the number of lightpaths, 
which is equivalent to minimizing the number of 
transceivers in the network. Constraints (1b) force 
the traffic between two nodes at any time, to be 
limited by the number of lightpaths planned in the 
virtual topology between those nodes. Constraints 
(1c) are the link-flow conservation constraints. 
Integrality constraints (1d) appear only in the 
unsplittable case (MH-VTD-FRu problem), 
preventing the flow between two nodes to be 
fractioned among different paths.     

3.2 MH-VTD-VR-s/u problems 

The decision variables of the problem are: 
• .},{0,1,2,... =),( ..,N}i,j = {1,.  jiu The number 

of lightpaths from node i to node j. 
• .],1,0[),,,,( {1,...,N}t1,...,N}, i,j,s,d= {  tdsjif =∈

The fraction of the total traffic flow from 
node s to node d  that is routed on  the 
existing lightpaths from node i to node j 
during time interval t. 

 
The problem formulation is given by (2). 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK 
HERE TO EDIT) < 
 

6

 

∑
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=
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(2c)

MH-VTD-VRu: 
TtNdsjitdsjif ,...,1},...,,1{,,,},1,0{),,,,( =∀=∀=  (2d)

 
As in the formulation (1), the objective function 

(2a) searches for a virtual topology that minimizes 
the number of lightpaths. Both capacity constraints 
(2b) and link-flow conservation constraints (2c) 
have been trivially adapted to consider a routing 
which can change along time, by considering 
independent constraints in each time slot. Again, 
integrality constraints (2d) appear only in the 
unsplittable case MH-VTD-VRu. 

 

4  Heuristic approach 
Herein, we propose a family of heuristics to solve 

the four variants of the MH-VTD problem 
described in this paper. We make use of the concept 
of domination between traffic matrices introduced 
in [6], as a foundation for our approach. For the 
sake of completeness, the next subsection briefly 
presents the relevant definitions and properties of 
the traffic matrix domination concept used in the 
proposed heuristics. 

4.1 Traffic Domination 

Let N be the number of nodes in the network. A 
traffic matrix D is a non-negative NxN matrix, 
where each element dij represents the amount of 
traffic demand from node i to node j. A NxN 
capacity matrix U is a non-negative matrix where 

each element uij represents the amount of capacity 
installed on the link between nodes i and j. A 
routing F={fijhk}, i,j,h,k=1,..,n is a function which 
assigns to each element fijhk, the fraction (in the 
interval [0,1]) of traffic demand dij that is routed on 
the link between nodes h and k. A routing can be 
splittable or unsplittable. In this model, a routing F  
is unsplittable if it is integer, i.e., if fijhk={0,1}, for 
all i,j,h,k=1,...,n. Finally, we say that a capacity 
matrix U supports a traffic matrix D if there exists a 
feasible routing F which enables all the traffic in D 
to be carried over U. 

Formal definitions of the two types of domination 
applied in this paper, called weak and total 
domination, follow. 

 
Definition 1: Let D1 and D2 be two traffic 

matrices. We say that traffic matrix D1 weakly 
dominates D2 if for any capacity matrix U 
supporting D1, then there exists at least one routing 
F such that (U,F) also supports  D2.  

Definition 2: Let D1 and D2 be two traffic 
matrices. We say that traffic matrix D1 totally 
dominates D2 if any capacity and routing pair (U,F) 
supporting D1, also supports D2. 

 
The difference between total and weak 

domination comes from the flow routing 
perspective. If a traffic matrix D1 totally dominates 
another traffic matrix D2, then any capacity and 
routing pair (U,F) that supports D1 also supports D2. 
If the domination is weak, then finding a capacity U 
and a routing F which supports D1 guarantees that 
capacity U is enough to carry the traffic D2, but 
does not guarantee that it can be done with the same 
routing F. Naturally, total domination is a stronger 
condition, which implies weak domination. 

A second variation of weak domination was also 
considered in [6], weak domination with respect to 
unsplittable flows, which applies to our planning 
scenario analysis. 

 
Definition 3: Let D1 and D2 be two traffic 

matrices. We say that traffic matrix D1 weakly 
dominates D2 with respect to unsplittable flows if 
for any capacity matrix U supporting D1 with 
unsplittable flows, then there exists at least one 
unsplittable routing F such that (U,F) also supports  



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK 
HERE TO EDIT) < 
 

7

D2.  
 
Note that the general weak domination case 

applies to general (and, thus, splittable) routing. 
Also, note that if a traffic matrix D1 totally 
dominates another matrix D2, the capacity and 
routing which is feasible for D1 is also feasible for 
D2, whether the routing is splittable or not. Thus, 
definitions 1-3 sufficiently cover all variants 
considered in the paper. 

The following properties are extracted from [6] 
and are the instrument we use to assess domination 
between traffic matrices. We refer to [6] for the 
proofs. 

 
Property 1: D1 weakly dominates D2 with respect 

to (un)splittable flows if and only if D1 (considered 
as capacity matrix) supports D2 by (un)splittable 
flows. 

Property 2: D1 totally dominates D2 if and only if 
dij

1≥dij
2, for any coordinate of the traffic matrix 

i,j=1,...,n. 

4.2 The general scheme of the proposed 3-
step heuristic approach 

The four MH-VTD problem variants considered 
in this paper have as an input parameter a sequence 
of T traffic matrices D1,...,DT, each of them of size 
NxN, being N the number of nodes in the network. 
The heuristics proposed for each of the 4 problem 
variants follow a common scheme, composed of 
three basic steps.  

Step 1: Replace-with-1 matrix. The initial 
sequence of traffic matrices D1,..., DT is replaced 
with one unique matrix D, such that matrix D 
dominates each of the matrices D1,...,DT. The type 
of domination depends on the problem variant, and 
will be described in detail in the subsection below. 

Step 2: Static Virtual Topology Design (VTD). 
Dominating matrix D is used to feed a heuristic 
algorithm for calculating a static virtual topology U 
(i.e. a capacity matrix) and a routing F (unsplittable 
for problems MH-VTD-FRu and MH-VTD-VRu), 
which minimizes the number of transceivers, our 
primary cost measure of interest.  

Step 3: (MH-VTD-VR problems) Per-time-slot 
flow routing calculation. For the MH-VTD-VR 

problem variations, the flow routing calculated in 
the previous step is not guaranteed to be a feasible 
routing over all time slots. Consequently, T 
instances of the multicommodity flow routing 
problem are solved to individually route the traffic 
flows in matrices Dt, t=1,...,T on top of virtual 
topology U for each time slot separately.  

 
The crucial point in the method is that the traffic 

dominance concept guarantees that a virtual 
topology U (a capacity matrix) calculated in Step 2 
which supports the traffic of D, will also be able to 
support the traffic in all the time slots D1,...,DT. As 
such, virtual topology U is a suitable virtual 
topology for our MH-VTD planning problem. 

 
A more detailed explanation of each individual 

step in the proposed 3-step heuristic follows in the 
next subsections. 

4.3 Step 1: Replace-with-1 methods 

Step 1 is a procedure to replace a sequence of 
traffic matrices D1,..., DT with one dominating 
matrix D, such that D dominates all matrices in the 
sequence, i.e,  matrix D dominates each matrix Dt, 
t=1,...,T. Depending on the problem variant 
considered, different types of domination between 
matrix D and matrices D1,...,DT are applied. For 
each case, we aim to find that matrix D among all 
possible matrices D’ which dominate the sequence 
(which includes, e.g., a matrix with all the 
coordinates set to infinity), which yields the most 
cost-effective virtual topology U. This aspect is 
described for each problem variant separately. 

 

4.3.1 Total domination for  problems MH-VTD-
FRs/u 

In the MH-VTD-FRs and MH-VTD-FRu 
problems, the flow routing must remain constant 
along time. Consequently, we must guarantee that a 
common routing F exists, such that (U,F) supports 
traffic Di, for all i=1,...,T. The following lemma 
proves the validity of the total domination relation 
as a strategy to solve this problem. 

 
Lemma 1: Let D be a matrix which totally 
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dominates a sequence of traffic matrices Dt, 
t=1,...,T. Let Us be a virtual topology and Fs a flow 
routing calculated such that (Us,Fs) supports matrix 
D with splittable flows. Then, (Us,Fs) is a solution 
for the MH-VTD-FRs problem. For the same matrix 
D, let Uu be a virtual topology and Fu a flow routing 
calculated such that (Uu,Fu) supports matrix D with 
unsplittable flows. Then, (Uu,Fu) is a solution for 
the MH-VTD-FRu problem. 

Proof: The proof comes immediately from 
applying the concept of total domination: as D 
totally dominates the sequence, every capacity-
routing pair (U,F) that support D, also supports 
every matrix in the sequence Dt, t=1,...,T. If the 
routing F is unsplittable, (U,F) is a solution to the 
MH-VTD-FRu problem.  

 
The following lemma provides a method to 

calculate the total dominating traffic matrix D we 
are searching for. 

 
Lemma 2: Given a sequence of traffic matrices 

D1,...,DT, the matrix D={dij}, i,j=1,...,n, such that 
dij=max{dij

1,...,dij
T}, totally dominates the sequence.  

Proof: As dij=max{dij
1,...,dij

T}, then for any 
i,j=1,...,N, it holds that dij≥ dij

t for all t=1,...,T. Then, 
matrix D totally dominates the sequence.  

 
The next lemma states that any other matrix 

which totally dominates the sequence, other than 
the one above, yields a less cost-effective solution 
for any cost measure we devise. 

 
Lemma 3: Let Da and Db be two traffic matrices 

which totally dominate the same traffic matrix 
sequence D1,...,DT. Let Da be calculated as shown in 
the previous lemma, while Db is calculated 
differently. Let c(U,F) be a cost function which 
associates a cost to a virtual topology U and a flow 
routing F. Let (Ua,Fa) be the virtual topology and 
routing pair that supports Da with the minimum cost 
attending to the cost function c. Let (Ub,Fb) be the 
virtual topology and routing pair that supports Db 
with the minimum cost attending to the same cost 
function c. Then, the cost obtained with Da is 
always equal to or lower than the cost obtained with 
Db: c(Ua,Fa)≤c(Ub,Db). 

Proof: The proof is based on showing that matrix 

Db must totally dominate matrix Da. This is proved, 
by reduction to the absurd. Let us assume that Db 
does not dominate Da. Then, there exists a node pair 
i,j=1,...,N such that dij

b< dij
a. Let Dt be the matrix in 

the sequence such that dij
a=dij

t, that is, the matrix 
associated to the time slot with the maximum value 
in the position (i,j). Then, it holds that dij

b<dij
t. 

Therefore, a contradiction is found, as if matrix Db 
does not dominate Da, then matrix Db can not 
dominate matrix Dt, and thus can not dominate the 
sequence.  

As matrix Db totally dominates matrix Da, every 
(U,F) pair that supports Db, also supports Da. It 
follows that the (Ub,Fb) pair that minimizes the cost 
figure supports both Da and Db. Then, 
c(Ua,Fa)≤c(Ub,Db), as we wanted to prove. 

 
Note that the method to calculate the totally 

dominating matrix D is applied to both the MH-
VTD-FRs and MH-VTD-FRu problems. As will be 
shown later, the heuristics proposed for these two 
problems differ only in Step 2 of the approach. 

 

4.3.2 Weak domination for problems MH-VTD-
VRs/u  

In the MH-VTD-VRs and MH-VTD-VRu 
problems, we are interested in finding a common 
virtual topology U and a time varying flow routing 
for the traffic sequence D1,...,DT. The following 
lemmas prove the validity of the weak domination 
relation as a strategy to solve this problem. 

 
Lemma 4: Let D be a matrix which weakly 

dominates a sequence of traffic matrices Dt, 
t=1,...,T. Let U be a virtual topology and F a flow 
routing calculated such that (U,F) supports matrix 
D with splittable flows. Then, there is at least one 
solution to the MH-VTD-VRs problem which has U 
as its common virtual topology, but potentially with 
different flow routings in different time slots. 

Proof: The proof is based on the definition of 
weak domination: as matrix D weakly dominates 
the sequence, and virtual topology U supports D, 
then the same virtual topology U supports any 
matrix in the sequence. However, note that the 
weak domination relation does not guarantee a 
common flow routing along time. 
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Lemma 5: Let D be a matrix which weakly 

dominates a sequence of traffic matrices Dt, t=1,...,T 
with respect to unsplittable flows. Let U be a virtual 
topology and F an unsplittable flow routing 
calculated such that (U,F) supports matrix D with 
unsplittable flows. Then, there is at least one 
solution to the MH-VTD-VRu problem which has 
U as its common virtual topology, but potentially 
with different flow routings in different time slots, 
all of them unsplittable. 

Proof: The proof is analogous to the one for the 
previous lemma, but replaces the “weak 
domination” relation with the “weak domination 
with respect to unsplittable flows” relation. 

 
Given a traffic matrix sequence D1,...,DT, the 

method to calculate a matrix D which weakly 
dominates the sequence is based on the application 
of the Property 1 from Section 4.1. This property 
states that the traffic matrix D we are searching for, 
seen as a non-integral capacity matrix, should be 
able to support all the traffic matrices in the 
sequence. Thus, finding a matrix D for the replace-
with-1 step in the MH-VTD-VR case, implies 
finding a common non-integral capacity matrix D 
which is capable of carrying the traffic over all the 
time slots in the sequence. In other words, finding a 
matrix D which weakly dominates the sequence, 
and finding a virtual topology U which solves the 
MH-VTD-VR problem, are almost equal problems. 
They can be solved with almost the same 
formulation. The difference between the 
formulation (2), which optimally solves the MH-
VTD-VRs/u problems, and the formulation for Step 
1 of our heuristic is that in Step 1, the integral 
constraints for the capacity matrix are removed. 
Therefore: 

 
• Calculating a matrix D which weakly 

dominates the sequence can be done by 
solving formulation (2) for the MH-VTD-
VRs problem, by relaxing the integrality 
constraints for capacity matrix U. The 
capacity matrix U obtained by the relaxed 
problem is the weakly dominating matrix 
searched. Note that by relaxing the 
integrality constraints in variables U, an LP 

(Linear Programming) problem is obtained, 
which can be solved in polynomial time.  

• Analogously, calculating a matrix D which 
weakly dominates the sequence with respect 
to unsplittable flows can be done by solving 
formulation (2) for the MH-VTD-VRu 
problem, by relaxing the integrality 
constraints for capacity matrix U. However, 
for this case, a MILP problem must still be 
solved since the routing variables remain 
binary as a consequence of the unsplittable 
flow constraint. 

 
In summary, the application of the weak 

domination concept in the Replace-with-1 step 
allows us to reduce the complexity of the problem 
by relaxing the integrality constraints in the 
capacity variables. Furthermore, the domination 
concept guarantees that any virtual topology 
supporting the resulting matrix will also support the 
traffic along all the time slots. 

Note that the method proposed above for finding 
matrix D, based on relaxing formulation (2), implies 
finding the weakly dominating matrix which 
minimizes the sum of its coordinates. This is a 
reasonable way to produce cost-effective virtual 
topologies and routings. Unfortunately, the method 
does not guarantee that any other matrices D’ which 
weakly dominate the same sequence, would yield 
virtual topologies of equal or higher cost. In 
contrast to the case for the total dominating relation 
described in Lemma 3, it is not true that the matrix 
D calculated by solving the relaxed version of 
formulation (2) is weakly dominated by all other 
matrices D’ which weakly dominate the given 
sequence. Consequently, finding the matrix which 
provides the most cost-effective virtual topology, is 
presumably as difficult as optimally solving the 
MH-VTD-VR problem. 

While the Replace-with-1 step described in this 
paper, implies a reduction in the complexity with 
respect to the original problem, calculating the 
weakly dominating matrix of a long traffic matrix 
sequence can still be too complex (or intractable in 
the MH-VTD-VRu case, which involves solving a 
MILP). As such, we propose two additional 
complexity-reduction methods which make use of 
the domination concept and the procedure described 
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in this section. They can be combined and used 
together as Step 1 in the heuristic approach for the 
variable routing problem variants. 

 

Method 1: Reduce to the maximal ‘non-
dominated set’, i.e. Reduce the original set of 
matrices to the maximal subset in which no 
matrix weakly dominates any other. 
This method eliminates a subset of matrices from 
the original sequence of traffic matrices 
S={D1,...,DT} in such a way that the reduced 
sequence yields an exactly equivalent solution to 
the MH-VTD-VR problem, i.e. the optimal solution 
remains the same. A matrix Dt is eliminated from 
the sequence, if it is weakly dominated by other 
matrix Dt’ in the sequence. The weak domination 
relation states that any virtual topology that 
supports Dt’ also supports Dt, and thus the set of 
feasible solutions to the MH-VTD-VR problem is 
not modified by its removal. Reducing to a maximal 
non-dominated set can be done by solving a series 
of small linear formulations where the domination 
between each pair of matrices is checked. This 
involves solving a flow routing problem in the MH-
VTD-VRs case, and its unsplittable version in the 
MH-VTD-VRu case. 
 

Method 2: Hierarchical calculation of the weakly 
dominating matrix.  

This method finds a matrix D which weakly 
dominates sequence S1={D1,...,DT} as follows. First, 
the matrices in S1 are partitioned into groups of two 
matrices consecutively. Then, for each group of two 
matrices, a matrix that weakly dominates both is 
calculated. This is done by using the relaxed 
version of formulation (2). For the MH-VTD-VRu 
problem, weak domination with respect to 
unsplittable flows is used. The calculated matrices 
form a sequence S2 comprised of ceil(T/2) matrices 
(if T is odd, one matrix from S1 is directly mapped 
to S2). The process is repeated, reducing the 
sequence size by half in each repetition. In the last 
repetition, a single matrix is obtained. Every virtual 
topology U that supports this matrix, also supports 
the matrices in the original sequence S1, and in all 
intermediate sequences. The method is suboptimal 
in the sense that it can not guarantee that other 

matrices D’ which dominate the original sequence 
cannot be found, which lead to more cost-effective 
virtual topologies. However, since there is no 
guarantee that the weakly dominating matrix solved 
using formulation (2) for the original sequence 
yields the optimal solution to the MH-VTD-VR, the 
solution obtained with this approximation technique 
is not necessarily worse. The complexity reduction 
obtained by applying this method is quite relevant, 
as the relaxed version of formulation (2) is executed 
for instances of only 2 matrices. The number of 
instances solved for a sequence of T=2k matrices, 
equals 2k-1+2k-2+...+20=2k-1=T-1. 

4.4 Step 2: Virtual topology design 
calculation 

In Step 2, the dominating matrix D calculated in 
the previous step is used to feed an algorithm that 
calculates a virtual topology which supports traffic 
D. In this paper, we have chosen the heuristic 
algorithm presented in [9] which sub-optimally 
minimizes the number of transceivers. It starts with 
a fully connected virtual topology where all the 
traffic is carried between node pairs in one direct 
virtual hop. If the traffic between a node pair 
exceeds the capacity of a lightpath, multiple 
lightpaths between the same pair of nodes are 
assumed. The algorithm iteratively tries to reroute 
all the traffic on the least loaded lightpath onto its 
shortest path using the spare bandwidth available in 
the current virtual topology. If it succeeds, the 
lightpath under consideration is eliminated from the 
virtual topology and the corresponding traffic is 
rerouted. The process is repeated until the traffic in 
the least loaded lightpath of some iteration can not 
be rerouted using the available capacity. While the 
algorithm described in [9] considers only 
unsplittable flows, we have made a modification 
which allows us to consider also a splittable routing 
version. The modification consists of solving a 
fractional min-cost flow problem for rerouting the 
traffic on the least loaded lightpath, instead of a 
shortest-path approach. The algorithm from [9] is 
used for the unsplittable problem variants MH-
VTD-FRu and MH-VTD-VRu, while the adaptation 
to fractional routing of [9] is used in the splittable 
problem variants. 
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In the MH-VTD-FR fixed routing problems, the 
method guarantees that the common virtual 
topology U and the common flow routing F 
obtained in this Step, are a feasible solution for the 
planning problem. In the MH-VTD-VR variable 
routing problem variants, a further step is needed. 

4.5 Step 3. Variable flow routing calculation 

In the MH-VTD-VR variable routing problems, 
the weak domination relation applied in the 
Replace-with-1 step, does not guarantee that the 
(U,F) pair calculated in Step 2, supports the traffic 
in all time slots. However, the method guarantees 
that for the obtained virtual topology U, there exists 
at least one routing Ft for each time slot t=1,...,T, 
which supports the traffic in that time slot.  

Step 3 is responsible of finding such a set of T 
flow routings F1,...,FT of interest, where each pair 
(U,Ft) supports traffic matrix Dt, t=1,...,T. If 
changes in the flow routing along time are not 
penalized, this can be done by solving T 
independent conventional multicommodity flow 
problems. If not, the flow routing problems in 
different time slots become dependent, yielding to a 
more complex problem. Some suitable heuristics 
have been proposed in the literature which could be 
then used in this Step [13],[14]. 

4.6 Summary  

To summarize, Table 1 collects the main aspects 
that define the family of heuristics proposed for the 
MH-VTD problem variants.  

 
Table 1 Methodology Of The 3-Step Heuristic Approach 
According to the Planning Problem 

 

5  Results 
This section presents exhaustive results obtained 

by applying the algorithms proposed in this paper to 
the four problem variants of interest. The 
algorithms were implemented in the MatPlanWDM 
tool [15] which links to the TOMLAB/CPLEX 
library [16] used to solve the MILP formulations.  

5.1 Results for synthetic traffic 

In a first step, both the MILP formulations and 
the heuristic approaches were tested for networks 
consisting of N={4,6,8} nodes, using traffic 
sequences generated synthetically. Each traffic 
sequence was composed of T=12 traffic matrices, 
each meant to describe the traffic of a 2-hour 
interval over the course of a day. Let M(i,j,t) denote 
a traffic matrix sequence, where M(i,j,t) is the 
traffic in Gbps from node i to node j during time 
interval t, i,j=1,...,N, t=1,...,T. Equation (3) 
describes the traffic synthesis model: 
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Initially, the traffic between two nodes at a given 

time, was calculated as the product of 3 factors. 
Factor MBase(i,j) gives the (i,j) coordinate of a base 
traffic matrix computed for the sequence as follows. 
80% of the values in Mbase (randomly chosen) were 
set to 1, while the remaining 20% were set to 2. 
This is meant to capture the effect of non-
uniformities in the generated traffic matrices. 
Activity factor activity(t) in equation (3) intends to 
capture the effect of traffic intensity variation along 
the day. Our intensity variation scheme is described 
by equation (4), based on the intensity model 
presented in [17]. 
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Planning 
Problem 

Step 1 Step 2 Step 3 

MH-VTD-
VRVRs 

Weak 
dommination 

Splittable 
variant of [9]. 
Obtain U. 

Required to obtain 
the flow routings Ft, 
t=1,...,T 

MH-VTD-
VRVRu 

Weak 
dommination 
(unsplittable) 

[9]. Obtain U. Required to obtain 
the flow routings Ft, 
t=1,...,T  

MH-VTD-
FRs 

Total 
dommination 

Splittable 
variant of [9]. 
Obtain (U,F) 

Not required 

MH-VTD-
FRu 

Total 
dommination 

[2]. Obtain 
(U,F) 

Not required  



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK 
HERE TO EDIT) < 
 

12

 
Factor rf(R) in (3) is a random value, uniformly 

distributed over interval [1-R,1+R]. A new 
independent sample of the rf(R) factor was used for 
each value M(i,j,t). The purpose of the rf factor is to 
include a randomness effect in the traffic intensity. 
The random factors used were R={0.1,0.2,0.5}, 
which correspond to low, medium and high random 
variation scenarios.  

After the full sequence M1(i,j,t) was calculated, a 
traffic normalization stage followed. All the traffic 
values in the sequence were multiplied by a 
normalization factor (nf). Value nf was calculated 
such that the average traffic between two nodes 
which occurs in the highest loaded time slot equals 
ρC, where C is the lightpath capacity. Value ρ 
represents the traffic load of the sequence 
normalized with respect to the lightpath capacity. 
The values tested in our study were ρ={0.1, 1, 10}. 
A value of ρ=0.1 corresponds to the case when the 
average traffic between two nodes in the highest 
loaded time slot fills only 10% of a single lightpath 
capacity. On the contrary, a value of ρ=10 captures 
cases in which the average traffic between two 
nodes in the highest loaded time slot fills 10 whole 
lightpaths. 

For each network size (N), randomness factor (R) 
and normalized load (ρ), we generated five 
independent sequences of traffic matrices, and 
solved all four variants of the MH-VTD problem. 
Table 2 shows the average number of transceivers 
used in the solutions obtained for each of the 5 
sequences, using both the exact MILP formulation 
described in Section 3 , and the heuristic methods 
presented in Section 4 . For the exact MILP 
formulations, the solver was configured to find a 
solution within a 5% of optimality gap due to its 
high complexity. In some cases, this optimality gap 
has produced solutions in which the cost of the 
MILP was higher than the solution obtained by the 
heuristics, or solutions in which the cost of the more 
constrained case (e.g. unsplittable and/or fixed 
routing) was found to be better than the less 
constrained case. Note, however, that these 
situations are a symptom of the small cost 
differences between both solutions. 

For the heuristic methods in the MH-VTD-VR 
variants, we calculated the matrix which weakly 

dominates the sequence by applying the two 
complexity reduction methods described in 
Subsection (4.3.2: first we found the maximal non-
dominated set, and then applied the proposed 
hierarchical scheme to find a matrix which weakly 
dominates all matrices in the reduced set.  

From the obtained MILP solutions, we can 
extract some interesting conclusions regarding the 
effect of the different factors on the network cost. 
As a general rule, and not surprisingly, the number 
of transceivers used is higher for series of traffic 
matrices with higher randomness factor R, higher 
normalized loads ρ and a higher number of nodes 
N. 

 With respect to the reduction in the number of 
transceivers obtained by allowing dynamic 
reconfiguration of flows, in contrast to the fixed 
routing case, the following conclusions can be 
made: (i) the reduction is negligible in the 
unsplittable routing case, (ii) in the splittable 
routing case, this reduction is small (a maximum of 
~13% at higher loads and higher randomness 
factors). 

Analyzing the same data obtained from the MILP 
solutions, we can compare splittable vs. unsplittable 
flow routing. For fixed routing, the cost reduction 
obtained by allowing the routing to be splittable 
was only relevant at medium loads ρ=1, increasing 
for higher randomness factors. The maximum 
reduction observed was of ~16%. For variable 
routing, the same trend was found, but with more 
intense cost reductions at medium loads (which 
reached up to ~22%) and non-negligible reductions 
at higher loads (up to 14%). 

Comparison of the variable-splittable routing 
case, in contrast to the fixed-unsplittable routing 
case, indicates a significant cost reduction only at 
medium loads (up to ~25%) and high loads (up to 
~17%). 

When we compare the results obtained from the 
exact MILP formulations with the ones obtained by 
the heuristic algorithms, we can see that, in almost 
all the cases, the results are fairly similar. The cost 
gap between the heuristic and the MILP solutions 
has a significant value (up to 40)%) only at low 
traffic loads. Note that in some cases, the heuristic 
method gave slightly better solutions for the fixed 
routing and/or unsplittable case than for the less 
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constrained variable and/or splittable routing. These 
situations are caused by the inherent inexactitudes 
in the heuristics 

The LB column in Table 2 shows a lower bound 
on the number of transceivers in the optimal 
solution calculated as follows. Given a traffic 
sequence, the minimum number of transmitters 
(receivers), LBTR (LBRE),  that a node n requires is at 
least the number of lightpaths needed to transmit 
(receive) the ingress (egress) traffic to the node, in 
its worst time slot.  
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It follows that a lower bound on the number of 

transceivers in the network is given by: 
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It is very important to note that the lower bound 

described above is a lower bound for the fully 
reconfigurable case in which (i) the virtual 
topology can be reconfigured along time, (ii) the 
flow routing is variable, and (iii) the flow routing is 
splittable. Therefore, for cases where the lower 
bounds are close to the MH-VTD solutions, we can 
claim that only a small reduction in the number of 
transceivers can be obtained by allowing the virtual 
topology to be dynamically reconfigured along 
time.  

The rightmost column in Table 2 shows the 
maximal reduction in the number of transceivers 
which could be obtained, in the variable and 
splittable flow routing case, if the virtual topology 
could change along time. In other words, this 
column shows the maximal transceiver reduction 
that could be obtained by using reconfigurable 
equipment over its non-reconfigurable variant. 
Interestingly enough, results show that only a minor 
reduction (a maximum of ~7%) can be achieved in 
all the scenarios tested, except for those with a low 
load  and N={6,8} nodes. In these cases the 
maximal cost reduction have shown to be high 

(~33% for 6 nodes, and 65% for 8 nodes) and 
independent of the traffic randomness factor. 

5.2 A realistic case study: the Abilene 
network 

In order to further validate the results and 
conclusions presented in this paper, we performed a 
case study  on realistic (not synthetically generated) 
traffic. To do so, we chose the 11-node Abilene 
network for which a real traffic trace is publicly 
available. The traffic matrices used were taken from 
the measures carried out in the TOTEM project 
(Toolbox for Traffic Engineering Methods) ¡Error! 
No se encuentra el origen de la referencia.. The 
sequence of matrices available in ¡Error! No se 
encuentra el origen de la referencia. spans several 
weeks. From this data, we averaged the values 
taken at the same time and day in the week to obtain 
a sequence representing the average week in 15-
minute time intervals (i.e., 96 matrices per day, 672 
matrices in total). In order to test different traffic 
intensities, the average week sequence was 
normalized for values ρ={0.1, 1, 10}, in the same 
manner as in the study on synthetic traffic described 
above. 

Naturally, the exact MILP formulations for such 
large problem sizes are intractable. Therefore, all 
tests were conducted using the 3-step heuristic 
approach proposed in this paper, along with the two 
complexity reduction stages described to simplify 
the first step of the algorithm. First, we applied the 
reduction to obtain the maximal non-dominated set. 
This reduced the number of matrices in the set from 
672 to 172 in the splittable case, and from 672 to 
479 in the unsplittable one. Then, the hierarchical 
version of the replace-to-1 step was applied to the 
maximal non-dominated sets.  

Table 3 shows the obtained results for all problem 
variants. Unfortunately, some parts of the analysis 
made in the previous section can not be repeated 
here. Namely, the results obtained by the heuristic 
algorithm for the unsplittable and variable routing 
case show a higher cost than the ones for the fixed 
routing case. This comes from the accumulated 
suboptimalities that appear in the hierarchical 
reduction method which become very significant 
with such a large number of matrices.  
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The analysis of the rest of the data confirms the 
main trends observed for synthetic traffic, although 
the cost reductions achieved by allowing variable 
routing and/or splittable routing are somewhat 
smaller. Firstly, we can see that for splittable 
routing, the reduction in the number of transceivers 
obtained by using variable routing, as opposed to 
fixed, is minor (a maximal reduction of ~7% was 
achieved for medium and high loads). In the fixed 
routing case, the cost reduction obtained by using 
splittable instead of unsplittable routing, is also 
minor (with a maximal reduction of ~8% at medium 
loads). Furthermore, if we compare the case of 
variable-splittable routing with the fixed-
unsplittable case, the results show only a moderate 
cost reduction, with a maximum of ~15% achieved 
at medium loads. 

As before, comparison of the MH-VTD results 
with the lower bounds indicates the maximal 
possible reduction in the number of transceivers that 
could be achieved by using reconfigurable optical 
equipment, i.e. allowing dynamic reconfiguration of 
the virtual topology. This maximal benefit was 
shown to be approximately 40%, 15% and 10% for 
low, medium and high loads, respectively.  

 

6  Conclusions and future work 
This paper studies the problem of finding a static 

virtual topology in transparent optical networks for 
a known time-varying traffic demand. Four problem 
variants are considered assuming variable/fixed 
flow routing with splittable/unsplittable flows. 
Exact MILP formulations, as well as a family of 3-
step heuristics, are proposed for each problem 
variant. The heuristics apply the concept of traffic 
domination, which provides a theoretical basis 
allowing us to devise a set of complexity reduction 
techniques for the problem. Extensive results using 
both synthetic traffic and realistic traffic traces are 
presented.  

Results support interesting conclusions regarding 
the cost reduction (in terms of the number of 
transceivers used) that network operators can 
achieve in different circumstances. For instance, in 
the scenarios studied the migration from fixed to 
variable routing is justified only if splittable routing 

is also allowed in the network, and only for medium 
or high loads. However, the maximum reduction 
obtained is still moderate (~15%) and is a trade-off 
with increased overhead. Analogously, for network 
operators evaluating the advantages of  splittable 
routing  in constrast to unsplittable routing, our 
results indicate that the migration is cost-effective 
for medium load scenarios, with a larger cost 
reduction if variable routing is allowed. Still, the 
reductions are moderate (with a maximum of 
~20%). 

A lower bound to the network cost has been 
provided for the case in which the network uses 
variable splittable routing, and the virtual topology 
can be dynamically reconfigured along time (i.e., 
uses reconfigurable optical equipment). The 
comparison of the lower bounds with our results  
obtained in the MH-VTD-VRs problem, allows us 
to measure the maximal benefit that can be 
achieved in the network with variable and splittable 
routing if it were to also permit dynamic 
reconfiguration of the virtual topology. The results 
show that the maximum cost reduction is not 
significant except in the low load scenario, where it 
can reach values of ~40% (in the Abilene case 
study) and up to 65% (in the studies with synthetic 
traffic). Nevertheless, it should be noted that in the 
low load scenario, as the number of lightpaths in the 
network is low, the reduction in the number of 
transmitters in absolute value is also small. 
Therefore, it is still a matter of study whether the 
increase in cost caused by using reconfigurable 
optical equipment, at all or some nodes in the 
network, as well as the extra signaling complexity, 
could be compensated for by the cost reduction 
achieved by using fewer transceivers. For future 
work, we will further investigate the trade-offs 
associated with replacing non-reconfigurable 
equipment with their reconfigurable counterparts, as 
well as continue our studies concerning the 
application of traffic domination to optical networks 
planning. 

 
Table 3 Abilene network. Total Number of Transceivers  
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 ST-VTD-VR ST-VTD-FR   

ρ Split. Unsplit. Split. Unsplit. LB Cost 
gap 

0.1 62 68 64 68 38 38.7% 
1 336 402 358 392 286 14.9% 
10 3046 3556 3292 3360 2739 10.1% 
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Table 2 Synthetic traffic. Number of transceivers in the network in the tested scenarios  

 
 
 
 
 
 
 
 
 

  
MH-VTD-VR MH-VTD-FR 

Split. Unsplit. Split. Unsplit. N ρ R 
Heur. Exact 

MILP Heur. Exact 
MILP Heur. Exact 

MILP Heur. Exact 
MILP 

LBs Cost 
gap 

0.1 10 8 9.6 8 9.6 8 9.6 8 8 0.0% 
0.2 9.6 8 10 8 10.8 8 10 8 8 0.0% 0.1 
0.5 10.4 8 9.6 8 9.2 8 9.2 8 8 0.0% 
0.1 28 28 30.4 30.4 28.4 28 30.4 30.4 28 0.0% 
0.2 30 28.4 40.4 34.8 34 30.8 40.4 34.8 28.2 0.7% 1 
0.5 34.8 32.8 44 38 36.8 33.6 46.8 38 31.4 4.5% 
0.1 258.4 255.2 270.4 270.4 264 262.8 270.4 270.4 253 0.9% 
0.2 272.8 264.8 294 294 288.4 285.2 294 294 260 1.9% 

4 

10 
0.5 295.2 283.6 319.2 317.2 319.6 309.6 326.8 317.2 274 3.5% 
0.1 18.8 16 19.6 16 19.6 16 19.6 16 12 33.3% 
0.2 19.2 16 19.6 16 18.8 16 19.6 16 12 33.3% 0.1 
0.5 20.8 16 22 16 22 16 22 16 12 33.3% 
0.1 72 71.2 75.6 75.2 72 72 75.6 75.2 70.6 0.9% 
0.2 76.4 71.6 96.8 87.2 80.4 76 96.8 88 71 0.9% 1 
0.5 85.2 76 111.6 96.4 95.2 84.8 116.8 102 74.2 2.4% 
0.1 646.8 635.6 686 670 668.4 670.8 686 670.8 627 1.4% 
0.2 686.4 662.4 747.2 747.2 728 726 747.2 747.2 647 2.4% 

6 

10 
0.5 753.6 716.4 847.2 834 849.2 817.6 869.6 868 693.4 3.3% 
0.1 32.8 26.4 34 26.4 34.8 26.4 34 26.8 16 65.0% 
0.2 33.2 26 34 26.4 34.8 26 34 26.4 16 62.5% 0.1 
0.5 34.8 26.8 38.4 27 38.4 26.8 40 27.6 16.6 61.5% 
0.1 131.6 127.2 145.2 140 134 132.8 145.2 142.4 123 3.4% 
0.2 136.4 130 177.6 158 148.4 141.6 177.6 160 127.6 1.9% 1 
0.5 155.6 140.4 200.8 181 179.2 159.2 225.2 188.8 134.8 4.2% 
0.1 1209.2 1224.8 1301.6 1310.2 1260.8 1261 1301.6 1319.6 1166.8 5.0% 
0.2 1264 1262.8 1397.6 1390 1359.2 1359 1396.8 1401.2 1196 5.6% 

8 

10 
0.5 1404 1368.8 1536.4 1540.4 1627.6 1586 1665.6 1651.2 1275.6 7.3% 


