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Abstract—Periodic lightpath reconfiguration of virtual 
topologies in transparent optical networks has been recently 
investigated as a mechanism to more efficiently adapt the 
network to predictable periodic traffic variations along a 
day or week. Scheduling periodic reconfigurations involves 
tuning a trade-off between a lower network cost obtained 
through better resource allocation, and undesired traffic 
disruptions that these reconfigurations may cause. This 
paper presents and compares two algorithms for planning a 
reconfigurable virtual topology suitable for exploring this 
trade-off. The first is based on a Lagrangean Relaxation of 
the planning problem, and the second is based on a Tabu 
Search meta-heuristic.  The merits of both algorithms are 
assessed for moderate network sizes through comparison 
with analytical lower bounds and exact solutions obtained 
by a MILP formulation.  
 
Index Terms—virtual topology design, network planning, 
multi-hour traffic, Lagrangean Relaxation, Tabu Search. 
 

I. INTRODUCTION 

Optical networks based on Wavelength Division 
Multiplexing (WDM) have become an accepted solution 
for today’s high-speed backbone networks  [1]. In such 
networks, traffic is carried over lightpaths. A lightpath is 
defined as a transparent all-optical connection between an 
optical transmitter in the originating node and an optical 
receiver in the terminating node using a wavelength 
channel in each traversed physical link. Since lightpaths 
allow bypassing the electronic processing of the traffic at 
intermediate nodes, savings with respect to electronic 
switching equipment are achieved. In order to carry a 

given set of traffic demands (in Gbps), a set of lightpaths, 
comprising a so-called virtual topology, is established 
over the physical topology. Therefore, the Virtual 
Topology Design (VTD) problem implies solving a 
multilayer routing problem consisting of two layers. The 
upper layer problem involves routing traffic flows 
(demands) over the virtual topology; while the lower 
layer problem implicates finding a Routing and 
Wavelength Assignment (RWA)  [2] of lightpaths over 
the physical topology. We must note that in this work we 
focus only on the upper layer routing problem and we 
assume a feasible RWA solution exists for each lightpath 
in the virtual topology. This assumption can realistically 
depict several network scenarios, such as metro-area 
optical networks with an over-dimensioned fiber plant. 

In this paper, we address a variant of the 
aforementioned VTD problem, where we assume that the 
traffic varies along a given period of time (e.g. a day) 
following a repetitive pattern, i.e., that the traffic is 
periodic. Therefore, the traffic demand can be represented 
as a temporal sequence of matrices, where each matrix is 
associated to a time slot. This variant is denoted as Multi-
Hour Virtual Topology Design (MH-VTD)  [3]. Real 
traffic traces, such as the Abilene backbone network  [4] 
and GEANT backbone network  [5], support this 
assumption of the periodic nature of traffic. 

The MH-VTD problem can be classified into: (i) the 
MH-VTD-NR (non-reconfigurable) problem, where the 
virtual topology cannot be changed along time, which 
means that we determine a static set of lightpaths capable 
of routing all the traffic as it varies over all time slots; 

800 JOURNAL OF NETWORKS, VOL. 7, NO. 5, MAY 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jnw.7.5.800-811



and (ii) the MH-VTD-R (reconfigurable) problem where 
the virtual topology changes along time to follow the 
multi-hour traffic variations. In both problem variants, the 
main objective is to minimize the number of optical 
transceivers in the network as a measure of the network 
cost. In the reconfigurable case, the number of 
reconfigurations associated with the evolution of the 
virtual topology is also minimized as a second 
optimization criterion. Considering these two objectives, 
we aim to take into account the trade-off existing between 
resources (optical transceivers) and reconfiguration costs. 
On the one hand, the reconfiguration of the virtual 
topology design along time may involve savings in 
optical resources since traffic is sent (received) to (from) 
different nodes at different peak hours. On the other hand, 
a reconfigurable virtual topology incurs extra costs 
provoked by the signaling complexity of the traffic 
adaptation and also by the disruptions in the existing 
traffic connections. 

In this case, we focus on the MH-VTD-R problem 
assessing the minimization of the number of transceivers 
achieved via lightpath reconfiguration, against the 
amount of reconfigurations required. Since the MH-VTD-
R problem is clearly NP-hard, like the single traffic 
matrix VTD problem (integer capacity planning)  [6], 
heuristic algorithms are required to handle large-sized 
problems. To this aim, we present two heuristic 
approaches to handle the multihour problem: (i) a 
Lagrangean Relaxation via Subgradient optimization  
method (denoted as LR), and (ii) an algorithm based on a 
Tabu Search (denoted as TS).  

The work presented in this paper is an extension of the 
works in  [27] and [23], where the aforementioned 
algorithms were initially proposed. In this paper, we 
expand the algorithm descriptions, specifically 
elaborating upon on the theoretical steps that support the 
LR method. Furthermore, we perform a new series of 
tests, both for synthetically generated traffic and traffic 
traces from reference topologies, to better assess the 
behavior and quality of the algorithmic approaches. We 
also include new results obtained by solving exact MILP 
formulations for networks of moderate sizes. For cases 
when the MILP becomes intractable, we compare with 
lower bounds on the optimal number of transceivers 
required in the network. 

The rest of the paper is organized as follows. Section II 
presents the state-of-the-art of multihour planning. 
Section III proposes an application to MH-VTD-R 
problems of the well-known Lagrangean Relaxation via 
Subgradient Optimization. Section IV describes a Tabu 
Search heuristic approach for the MH-VTD-R problem 
with penalization of reconfiguration. Section VI shows 
the results of the case studies considered and, finally, 
Section VII concludes the paper. 

II. RELATED WORK 

Multi-hour network design has been researched for 
multiple network technologies  [7]- [27] (see  [10] for a 

comprehensive survey). If we focus on optical networks, 
the first investigations of MH planning were targeted 
towards the design of virtual topologies in multi-hop 
networks based on passive stars  [7].  

However, in the last decade, the interest of the optical 
community has shifted to lightpath-based transparent 
optical networks  [3], [8], [11]- [27]. Initial investigations 
on virtual topology reconfiguration consider solely the 
case of one-time adaptations. In such cases, a change in 
traffic is known and procedures adapt the existing VTD 
to this change, without considering periodic (multi-hour) 
traffic trends  [8], [11]- [14]. In all these works, a common 
objective is to minimize the number of lightpath 
reconfigurations in the VTD so as to reduce disruptions in 
the traffic connections. 

Recently, other strategies have been attracting the 
interest of the research community considering 
periodicity in transparent optical networks planning  [3], 
 [15]- [27]. Most such research efforts have been centered 
on planning in the lower layer, i.e., finding an RWA for a 
given sequence of virtual topology designs corresponding 
to MH traffic. This is based on the Scheduled Lightpath 
Demand (SLD) model proposed in  [15] where the 
evolution of individual lightpaths is known in advance. 
The planning problem then consists of finding a set of 
valid RWA solutions for the input VTDs, optimizing 
several network performances, such as the number of 
wavelengths used in the highest loaded fiber link. The 
SLD model enables more efficient utilization of resources 
by exploiting the temporal relationship between 
lightpaths. In   [15], a branch and bound algorithm and 
Tabu Search heuristic were proposed for the Routing and 
Wavelength Assignment of a set of SLDs. An enhanced 
Tabu Search algorithm and efficient greedy algorithms 
for the same problem were proposed in  [16]. Fault 
tolerant RWA was studied in  [17] where the authors 
propose a Simulated Annealing algorithm using channel 
re-use and back-up multiplexing. Fault-tolerant RWA 
SLDs under single component failure was considered in 
 [18]. They develop ILP formulations for the problem with 
dedicated and shared protection. In  [19], the authors 
indicate some drawbacks in the formulations from   [18], 
and give new ILP formulations for survivable service 
provisioning in networks with wavelength conversion. 
Their objective is to minimize the number of wavelength-
links used by primary and secondary paths with 
guaranteed restoration in case of single failures.  

A more general model, called the sliding scheduled 
traffic model was proposed in  [20].  In this model, the 
set-up and holding times of lightpath demands are known 
in advance, but they are allowed to slide within a 
predefined window. Consequently, service provisioning 
consists not only of solving the RWA problem, but also 
scheduling demands in time subject to the sliding window 
constraints with the objective to minimize demand 
overlap. In  [20], they solve the problems subsequently: 
first tackling scheduling using a demand time conflict 
reduction algorithm, and then solving RWA with two 
proposed approaches. Fault tolerant RWA for the sliding 
scheduled traffic model in networks without wavelength 
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conversion was considered in  [21]. They also propose a 
two-phase approach: time conflict resolution followed by 
RWA. ILP formulations which jointly solve lightpath 
scheduling and RWA for the sliding scheduled traffic 
model are given in  [22], along with a faster two-step 
optimization approach for larger problems. 

In contrast to the above detailed works, this paper is 
centered on the upper layer multihour problem, i.e. 
determining the evolution of the virtual topology from the 
MH traffic. To the best of our knowledge, the only work 
previous in the literature on the MH-VTD-R problem 
variant is  [23] which presents a naïve approach for the 
reconfigurable problem where the VTDs are 
independently planned in each time interval. 

In the last years, we have been intensively investigating 
different MH-VTD problem variants presented in  
 [3], [25]- [27]. In  [25] a set of MILP formulations is 
proposed to solve several MH-VTD-NR and MH-VTD-R 
problem variants minimizing solely the number of 
transceivers. In  [26], a set of Tabu Search based heuristic 
algorithms solving the previous problems is presented. In 
 [3], we focus on the comparison of a set of variants of the 
non-reconfigurable problem, with and without flow 
routing reconfiguration. A set of MILP formulations for 
the problem and a 3-step algorithm which is based on the 
concept of traffic domination  [28] are proposed.  

Finally, in  [27] we center on the reconfigurable 
problem, minimizing both transceiver and reconfiguration 
cost. We present two families of heuristic algorithms. 
One family of algorithms is based on the Tabu Search 
approach from  [26], and the other one is based on a 
decomposition consisting of a Lagrangean Relaxation and 
a subgradient optimization of the dual problem.  

Concerning to the application of similar heuristic 
approaches to network planning, we have already quoted 
above some examples of Tabu Search algorithms 
proposed for optical networks planning (  [15],   [16]). The 
Lagrangean Relaxation approach, on the other hand, has 
been applied previously in  [10],  [30] to solve multihour 
capacity design problems in dynamically reconfigurable 
ATM-based broadband networks. In these works, time-
fixed modular capacities were assigned to an underlying 
and given physical topology, whereas time-varying 
virtual ATM paths were routed over these modular 
capacities. This problem is equivalent to the MH-VTD- 
NR problem, a problem variant not addressed herein, 
considering the time-fixed modular capacities as non-
reconfigurable lightpaths, and the virtual ATM paths as 
non-defined higher layer traffic flows. On the contrary, in 
this work the algorithm is applied to the optical MH-
VTD-R problem as formulated in Section III. In this MH-
VTD problem variant, we attempt to minimize the 
number of optical transceivers and lightpath 
reconfigurations in a reconfigurable (time-varying) 
virtual topology. 

 

III. LAGRANGEAN RELAXATION (LR) APPROACH 

This section describes the application of the well-
known Lagrangean Relaxation via Subgradient 
Optimization method  [29] to multihour problems in 
optical networks. We refer to this approach as LR in the 
rest of this paper. This optimization method is based on 
relaxing the MH-VTD-R problem formulated as a MILP 
model. Therefore, we will introduce a formal model for 
the MH-VTD-R considered in this paper before 
describing the LR approach proposed.  

A. MILP  Formulation 

In this subsection, we show an exact MILP formulation 
proposed for the MH-VTD-R problem which penalizes 
number of lightpath reconfiguration frequency.  

 Let N be the number of nodes in the network, and T 
the number of time slots in the multihour traffic. Let 
i, j, s, d, n = {1…N} be the indices for the nodes, and 
t = {1…T} be the index for the time slots Note that we 
assume that the last time interval t = T is followed by the 
first time interval t = 1, since traffic is periodic. Let ht 
denote the traffic matrix at time slot t, and hsd 

t denote the 
traffic demand (measured in Gbps) from node s to node d, 
during time interval t). Let C denote the lightpath 
capacity in Gbps. The cost of each transmitter and 
receiver is considered equal, and is represented by c1. An 
artificial cost of reconfiguring (setting up or turning 
down) a lightpath is denoted as c2. 

The decision variables of the MH-VTD-R problem are: 
 
 f = (fij

sdt)  [0, 1]. Fraction of the total traffic 
demand hsd 

t from node s to node d that is routed 
on the existing lightpaths from node i to node j. 

 p = (pij
t) = {0, 1, 2, ...}. Number of lightpaths 

from node i to node j, required during time 
interval t. 

 tx = txn = {0, 1, 2, ...}. Number of transmitters 
installed in node n.  

 rx = rxn = {0, 1, 2,...}. Number of receivers 
installed in node n.  

 r+ = (r+
ij

t) = {0, 1, 2, ...}. Number of new 
lightpaths set up at time t with respect to the 
number of existing lightpaths at time t-1 (or time 
T if t=1) between the nodes (i, j). 

  r- = (r-
ij

t)={0, 1, 2, ...}. Number of lightpaths 
torn down at time t with respect to the number of 
existing lightpaths at time t-1 (or time T if t = 1) 
between the nodes (i, j) 
 

Then, the problem formulation is given by (1). 
 

   
tji

t
ij

n
nn rcrxtxc

,,
21min       (1a)

 
Subject to 
 
  },...,1{  },,...,1{,   ,

,

TtNjipCfh t
ij

ds

sdt
ij

t
sd   

(1b)
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nj


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
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
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},...,1{  },,...,1{  , TtNnptx
j

t
njn   

(1d)

},...,1{  },,...,1{  , TtNnprx
i

t
inn   

(1e)

}...,2{ },...,1{,  ,1 Tt,Njirrpp
t
ij

t
ij

t
ij

t
ij  

(1f)

},...,1{,  
111 Nji,rrpp ijij

T
ijij  

 
(1g)

 
The objective function (1a) minimizes the total cost of 

the transmitters and receivers (c1) and the artificial 
lightpath reconfiguration cost (c2). Constraints (1b) and 
(1c) are the standard link capacity and link-flow 
conservation constraints, respectively. Constraints (1d) 
and (1e) guarantee that, at any time, the number of 
transmitters (receivers) installed at a node n is sufficient 
to establish the decided number of lightpaths originating 
(terminating) at n, respectively. And, finally, constraints 
(1f) and (1h) links the r+ and r- variables with the 
accounting for the absolute increase and decrease, 
respectively, in the number of lightpaths between nodes 
i,j, at time t. 

B. Lagrangean Relaxation via Dual Subgradient 
Optimization Algorithm 

The Lagrangean Relaxation approach proposed herein 
uses the same general procedure described in  [10] and 
 [29], [30]. We will describe the application of this 
procedure to the MH-VTD-R problem, but we encourage 
the interested reader to consult these works for the 
detailed mathematical foundations about duality 
concepts.   

The philosophy of the method is based on the idea of 
solving the MILP formulation (1), denoted in the 
remaining subsection as primal problem, in the dual 
variable space. The resulting dual problem consists of the 
maximization of a non-differentiable concave function. 
Therefore, the problem can be solved by using a standard 
iterative subgradient algorithm.  

The minimization primal problem (1) is transformed 
into a maximization dual problem by “relaxing” (or 
“dualizing”) a specially chosen subset of primal 
constraints. This “relaxation” is performed by adding 
these constraints to the primal objective function (1a) 
weighted by “Lagrangean multipliers” (also named “dual 
variables”). Then, the so-obtained Lagrangean Relaxed 
Problem is still a minimization problem in the primal 
variable space but parameterized by the dual multipliers. 
The optimization of this problem generates a value of the 
dual objective. Since Lagrangean Relaxed Problem is 
parameterized by the dual multipliers, the value of dual 
function will depend on the particular values of the 
multipliers. Consequently, to solve the dual problem, we 
are interested in finding those dual variables (or 

multipliers) maximizing the dual function. The 
exploration of the dual variable space can be carried out 
through a heuristic subgradient optimization method, 
since the dual function is concave. In such a method, we 
jump from a dual solution to other by following the 
direction of the subgradient vector of the dual function. 
The newly found values for the dual multipliers are 
employed to define a new instance of the Lagrangean 
Relaxed Problem, which is solved in the next iteration to 
find a new dual function value. Therefore, the overall 
method is based on successive iterations, each one of 
them consisting of a minimization step of the Lagrangean 
Relaxed Problem; and, a maximization step of the Dual 
Problem via a subgradient optimization. During these 
steps, the best primal and dual solutions are stored. We 
must recall from duality theory that the maximal value of 
best dual solution constitute a lower bound on the optimal 
primal objective function value. As a consequence, the 
method provides us a sub-optimality gap along the 
iterations. Finally, the algorithm finishes when the sub-
optimality gap falls below a threshold or a maximal 
number of iterations is reached. In the next paragraphs, 
we will detail these aspects. 

The Lagrangean Relaxed Problem appears when the 
constraints (1b), (1d) and (1e) are “relaxed” (or 
“dualized”) by adding them (weighted by Lagrangean  
multipliers) to the objective function (1a) and eliminating 
them of the total set of constraints of (1b)-(1h). Let λ = 
(λij

t), μ = (μi
t) and  ν = (νj

t) be the Lagrangean  (or dual) 
multipliers associated with the constraints (1b), (1d) and 
(1e), respectively. Then, the Lagrangean function L(λ, μ, 
ν, f, p, tx, rx, r+) resulting of the relaxation is: 
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And the Lagrangean Relaxed Problem is: 
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,,,,
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Where W(λ, μ, ν) is the dual function, and the dual 

problem to solve via subgradient optimization is: 
 

 0ν0μ0λνμλ
νμλ

 ,,  |  ),,(max
,,

W  (4) 

 
The minimization problem (3) of the Lagrangean  

function L(λ, μ, ν, f, p, tx, rx, r+) can be decoupled into 
four sets of separate minimization subproblems since the 
relaxation of the constraints (1b), (1d) and (1e) has  
broken the dependencies among some primal decision 
variables. The first and second sets of subproblems are 
associated to the variables tx and rx, respectively. The 
third set of subproblems corresponds to the variables f 
solely restrained by the constraints (1c). And, finally, in 
the fourth set of subproblems the variables p, r+ and r- 
remain linked trough the constraints (1f) and (1g). 
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If we analyze these subproblems, we observe that 
solutions tx* , rx*  and f* to the first (W1), second (W2) 
and third (W3) subproblems, respectively, can be easily 
computed. For each group (s,d,t), the solutions f*ij

sdt is the 
shortest path between node s and d in network with link 

weights λij
t. The solutions tx*n can be trivially obtained by 

setting: 
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Whereas, the solutions rx*n can be trivially obtained 

by: 
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where UBTX and UBRX are upper bounds on the number of 
transmitters and receivers, respectively. These upper 
bounds may be artificially large enough values. 

Conversely, LBTX (or LBRX) represents lower bounds on 
the number of transmitters (or receivers); and, for each 
node n, we can take the minimum number of transmitters 
(or receivers) that the node n requires, i.e., the largest 
number of lightpaths required to add (or drop) the total 
traffic generated by (or targeted to) the node in any time 
slot t. Thus, these lower bounds can be calculated as 
follows. 
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Finally, the solution p* , r*+ and r*- are obtained by 

solving the fourth set of ILP subproblems W4 in (5). 
Although solving these subproblems implies to solve ILP 
formulations, we must note that they suppose an 
important reduction on complexity with respect to the 
original unrelaxed primal one. 

Once we have found a solution (f*, p*, tx*, rx*, r*+, 
r*-) that minimizes the Lagrangean function L(λ, μ, ν, f, 
p, tx, rx, r+) (2), the dual function is totally characterized. 
Further, we must note that dual function is a piecewise 
linear concave function, since it is the minimum of the 
linear functions appearing in the solutions of the 
subproblems. This is the key point of the method. We 
have transformed a mixed-integer problem into a convex 
problem (maximization of a concave function) where a 
local solution is also a global one. On the other hand, the 
new concave problem is not differentiable (the objective 
function is piecewise). Thus, the dual space could not be 
explored with a classical gradient optimization step but 
with a subgradient one. The subgradient vector g, used as 
search direction, is computed as follows: 
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Then, the new triple (λ, μ, ν) in the dual space in the 

next iteration k+1 is updated by the subgradient step as: 
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k
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where the step size sk  is given by : 
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where W is the best dual function value found along the 
algorithm’s iterations and p is parameter initiated to p0 

value and halved after a certain number of iterations kp 
without improvement in the dual objective, without 
becoming less than a minimal value pmin. 

The new dual multipliers (λk+1, μ k+1, ν k+1) are replaced 
in the Lagrangean function (2), given rise to a new 
instance of the Lagrangean Relaxed Problem (3) for the 
k+1 iteration. Then, after solving the new Lagrangean 
Relaxed Problem, a new subgradient optimization step 
follows. During the algorithm’s iterations, we store the 
best primal and dual solutions found and update the 
corresponding suboptimality gap from them. The method 
continues until a stoping rule such as maximum number 
of iterations kmaz > kp is reached; or, the suboptimality 
gap becomes negligible. 

Finally, and before concluding this subsection, we 
must note that the minimal solution (f*, p*, tx*, rx*, r*+, 
r*-) that optimizes the Lagrangean Relaxed Problem (3) 
might be not feasible from the point of view of the primal 
problem (i.e. primal unfeasible), since we have relaxed 
some constraints in (1). Therefore, we need to find a 
primal feasible solution (f*, ppf, txpf, rxpf, r*+, r+pf ,r-pf). 
This solution can be generated from the minimal solution 
f* following the next steps. Unlike the solutions p*, tx* , 
rx*, and  r+*; the solutions f* is also primal feasible.  For 
this reason, we may use initially f* in (1b) to compute a 
primal-feasible solution ppf. Then, this solution ppf  will 
be replaced in (1d) and (1e) to derivate primal-feasible 
txpf and rxpf; and, in (1f) and (1g) to derivate primal-
feasible r+pf and r-pf. 

IV. TABU SEARCH (TS) APPROACH 

In this section, a Tabu Search heuristic algorithm, 
denoted as TS in the remainder of this paper, is proposed 
to address the MH-VTD-R problem with penalization of 
lightpath reconfiguration. This is an adaptation of the 
approach presented in  [16] to include the minimization of 
the reconfigurations in the virtual topology. Tabu Search 
is an iterative meta-heuristic where the exploration of the 
solution space is controlled by a memory structure called 
a tabu list. The tabu list stores a certain number of the last 
visited solutions, prohibiting the search to reconsider 
them for as long as they remain in the list. With this, we 
prevent the search from cycling between neighboring 
solutions around a local optimum. 

First, the algorithm starts with an initial current 
solution. Then, in each iteration, the algorithm explores 
all the neighboring solutions with respect to the current 
one, except those memorized in the tabu list. In our 
approach, we explore a reduced neighborhood to alleviate 
the computational load. The solutions explored in the 
neighborhood are computed by a single-time slot MILP 
formulation, which constraints the number of available 
transceivers at a given node n in a given time slot t. All 
the neighboring solutions explored in the iteration are 
evaluated with a fitness function. The best one becomes 
in the new current solution in the next iteration. After 
each iteration, the tabu list and the best found solution 
overall, called the incumbent solution, are updated. The 
algorithm terminates according to a predefined 
termination criterion, in our case, the number of iterations 
without improvement.  

A.  Solution Computation 

A solution in TS consists of T virtual topology designs, 
one for each time slot t = 1, …, T. Each one of these 
VTDs is computed by the single time slot MILP 
formulation (14). This formulation receives as input a 
single traffic matrix and a set of upper bounds on the 
number of transceivers at each node. It calculates a 
virtual topology and its corresponding flow routing with 
the objective to minimize electronic switching, i.e., to 
minimize the number of lightpaths traversed by a unit of 
traffic in the network. 

The decision variables are: 
 
 f = (fij

sd)  [0, 1]. Fraction of the total traffic 
demand hsd from node s to node d that is routed on 
the existing lightpaths from node i to node j. 

 p = (pij) = {0, 1, 2, ...}. Number of lightpaths from 
node i to node j. 

 
The objective function and the set of constraints are 

described in (14), for the problem associated with a time 
slot t = 1, ..., T:  

 


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Constraints (14b) represent the capacity constraints, 

and equations (14c) are the flow conservation constraints. 
Constraints (14d) and (14e) ensure that the number of 
lightpaths originating (terminating) at a given node, must 
be below the pre-fixed upper bounds on number of 
transmitters (receivers) at that node.  

The initial solution in TS is obtained by solving the 
formulation (14) separately for each time slot t = {1...T}, 
setting to infinity the upper bounds on the transceivers 
per node UBTX(n) (or UBRX(n)). 

B.  Solution Space Exploration 

Herein, we introduce some concepts and notations 
required for a better understanding of the algorithm 
description:  

 
 Activity matrices: For a given solution composed of 

T virtual topologies, we define a (NxT) matrix named 
Active Transmitters (AT) matrix. 
AT(n,t) = {0, 1, 2, …} represents the number of 
transmitters that are active at node n in time slot t in 
that solution. In other words, a row n shows how the 
number of active transmitters at node n varies over 
time. A column t shows the number of active 
transmitters at all nodes in time slot t. The necessary 
number of transmitters per node is shown as a vector 
T(n) = max(t){AT(n,t)}, i.e. the maximum element in 
each row n. The total number of transmitters needed 
in the network corresponding to that solution is 
Ttot = sum(n){T(n)}. Consider the following example. 
Suppose there are 3 nodes and 4 time slots, i.e. 
N = 3, T = 4, with an Active Transmitters matrix of a 
potential solution as shown below. 
 

 
 
In this example, value AT(1,4) = 2 indicates that in 
the fourth time slot there are 2 transmitters active at 
node 1. The number of necessary transmitters per 
node is: T(n) = [3 2 4], while the total number of 
transmitters required is Ttot = 11.  

We do the same for receivers to get activity matrix 
Active Receivers (AR), the necessary number of 
receivers per node R(n), and the total required 
receivers Rtot. 
 

 Utilization matrices: For a given solution, we define 
a (NxT) matrix, which we denote as Utilization of 
Transmitters (UT) matrix. It is obtained from matrix 
AT by subtracting from each element in AT, the 
value of the maximal element in its row except itself. 
In other words, 
 

)),((max),(),(
|

tnATtnATtnUT i
ttt

iiii
i

  (15)

 
According to the above definition, the utilization 
matrix for the previous example is:  
 

 
 
The positive elements in this matrix indicate the 
number of transmitters that are only used in a single 
time slot, i.e. are not very efficiently utilized. For 
example, UT(3, 4) = 2 indicates that in time slot 4 at 
node 3, there are 2 transmitters that are only used in 
this time slot. Intuitively, trying to rearrange these 
poorly utilized transmitters may lead to better results. 
We do the same for receivers from AR to get a 
matrix Utilization of Receivers (UR).  

 
TS explores the solution space as follows. The heuristic 

iteratively solves smaller MILP formulations (14) 
limiting the number of transceivers for independent time 
intervals in order to jump between neighboring solutions, 
and, thus, explore the solution space in a directed manner.   

After solving (14), without limiting the number of 
transceivers, for each time slot t = {1...T} to create an 
initial solution, Tabu Search iterations are run alternating 
between limiting the total number of transmitters and the 
total number of receivers until the maximal number of 
iterations without improvement of the best solution is 
met. Upon termination, the incumbent (i.e., best visited) 
solution is deemed the final result. During these 
iterations, two tabu lists are maintained, realized as FIFO 
(First In First Out) queues of finite size corresponding to 
either transmitters (tabu list TLTX) or receivers (tabu list 
TLRX). Each entry in TLTX (or TLRX) is a node n where the 
transmitters (or receivers) cannot be further reduced as 
long as n remains in the list. 

In each iteration, we consider neighboring solutions of 
a current solution to be all those one changed in only one 
time slot t, i.e., solely a virtual topology and a flow 
routing at a time slot t is different between two neighbors, 
whereas the VTDs for the remaining time slots are equal 
between them. Since there are a large number of such 
solutions, we propose a neighborhood reduction 
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technique to consider those solutions more likely to 
improve the incumbent solution. 

Firstly, if the number of transmitters (or receivers) at 
some node in the current solution is already at its lower 
bound according to (8) (or (9)), there is no need to 
consider neighboring solutions with less transmitters or 
receivers, respectively. If we consider that we are 
searching for virtual topologies which use the minimum 
number of transceivers required to carry the offered 
periodic traffic, reducing the number of transceivers at 
highly utilized nodes does not seem very useful. A 
reduction of these transceivers will need compensation in 
several time slots. Conversely, reducing a transmitter 
(receiver) at nodes where transmitters (receivers) are used 
only in one single time slot can more easily be 
compensated for. In other words, we think eliminating 
poorly utilized transceivers where feasible should yield 
better results. 
     Consequently, we perform a neighborhood reduction 
as follows. For each node n = {1…N}, we choose one 
time slot t with poorly utilized transmitters, excepting for 
those nodes forbidden by the tabu list TLTX. These pairs 
(n, t) correspond to those neighboring solutions taken as 
candidates with respect to transmitters. Thus, the total 
number of candidates with respect to transmitters is N 
minus the size of the tabu list TLTX. Analogously, we can 
define candidates with respect to receivers. Note that 
candidates cannot include nodes at time slots for which 
the lower bound on transmitters/receivers is reached.  

To choose the set of candidates (n, t) with respect to 
transmitters, we consider only strictly positive, i.e. poorly 
utilized, elements in UT, for which AT(n,t) > LBTX(n). For 
each node n, we choose randomly one such element  
which is not forbidden by the tabu list. If there are no 
positive elements in UT, we choose a random time slot 
corresponding to one of the elements with zero value 
zero. For each obtained candidate (n, t), we run the 
formulation (14) for the traffic matrix at time t but 
limiting the maximum number of transmitters at node n to 
AT(n, t)-1. Receivers at node n, along with transmitters 
and receivers at all other nodes, are also limited to their 
maximal value along time in the current solution. The 
new virtual topology obtained by solving the formulation 
(14) replaces the virtual topology at corresponding time 
slot t in the current solution, giving the new neighboring 
solution. The same is done to obtain neighbors from 
candidates (n, t) with respect to receivers, chosen 
analogously from non-negative elements of UR for which 
AR(n,t)  >  LBRX(n). 

In our example, assuming no violation of the lower 
bound and tabu list constraints, we would have three 
neighbors with respect to transmitters obtained from 
candidates (1, 1), (2, 1 or 2) and (4, 3), which correspond 
to elements UT(1, 1), UT(2, 1) or UT(2, 2), and UT(4, 3), 
respectively. If all neighboring solutions in the reduced 
neighborhood are infeasible in one iteration, the 
neighborhood is increased to 2·T·N where candidates 
correspond to all nodes and all time slots for both 
transmitters and receivers, and with no constraints 
imposed by the tabu list.  

The quality of all the candidates is assessed by means 
of a fitness function. The best neighboring solution 
among these candidates, according to the fitness function, 
becomes the new current solution in the next iteration. 
The used fitness function is defined as:  
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(16)

 
where pij

t is the number of lightpaths established between 
nodes i and j at the time slot t, c1 is the cost of one 
transceiver (or receiver), and c2 is the cost of one 
lightpath reconfiguration. 

This fitness function aims to minimize both the 
number transceivers and the lightpath reconfigurations, 
assuming reconfigurable equipment, i.e., the same 
transceivers can be used for different lightpaths as long as 
they are in different time slots. The lightpath 
reconfigurations are computed as the increases or 
decreases in the number of lightpaths between 
consecutive time slots.  

We can observe that (16) matches with (1a) expressed 
in terms of pij

t, since solutions constructed by the Tabu 
Search algorithm in each iteration are derived from single 
time interval MILP formulations (14) for all t. 

After each iteration, if the new current solution 
selected as above is better than the incumbent solution, 
the incumbent solution is updated accordingly. In 
addition to this, the tabu lists TLTX  and TLRX  are updated 
to include the node n of the best neighbor in the last 
iteration. 

Finally, the Tabu Search terminates when a maximum 
number of iterations without improvement is reached. 

V. RESULTS 

This section presents the results of extensive tests 
conducted to assess the performance of the proposed 
algorithms, compared with those obtained by the exact 
MILP formulations (in small networks) and lower bounds 
to the network cost (for larger networks). The algorithms 
were implemented in the MatplanWDM tool  [31] which 
links to the TOMLAB/CPLEX library  [32] to solve the 
MILP formulations. 

Since we follow the assumption of a sufficient number 
of wavelengths established in Section I, any VTD has a 
feasible RWA solution. Thus, the optimization problem is 
independent of the physical network topology. Therefore, 
the multihour demand is the only input data to the 
planning problem. Under these considerations, the 
Lagrangean Relaxation (LR)-based and the Tabu Search 
(TS)-based approaches are tested and compared for six 
network traffic data scenarios: a) three small-sized 
scenarios based on artificial networks; and, b) three 
larger-sized scenarios based on reference networks 
brought from literature. In all these scenarios, the 
multihour traffic consists of 24 matrices used to illustrate 
hourly fluctuations over the course of a day. All the 
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simulations were run on an Intel Core2 Duo CPU P8400 
2.26 GHz processor. 

The small non-real network scenarios consist of three 
networks of N = {4, 6, 8} nodes, respectively. For each 
network case, five multi-hour sequences were generated 
randomly using the model described in the equations 
(17)-(18). 

 

.,,    ),()activity( tjiRrftbm ij
t
ij   (17) 

 
According to the model, the traffic between two nodes 

at a given time mi,j 
t was calculated as the product of three 

factors. First, factor bi,j  gives the (i,j) coordinate of a base 
traffic matrix computed for the sequence as follows. 80% 
of the values in matrix b (randomly chosen) were set to 
one, while the remaining 20% were set to two. This is 
meant to capture the effect of non-uniformities in the 
generated traffic matrices. Secondly, activity factor 
activity(t) in equation (17) intends to capture the effect of 
traffic intensity variation along the day. Our intensity 
variation scheme is described by equation (18), based on 
the intensity model presented in  [33]. 
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Factor rf(R) in (17) is a random value, uniformly 

distributed over interval [1-R, 1+R]. A new independent 
sample of the rf(R) factor was used for each value mi,j 

t. 
The purpose of the rf factor is to include a randomness 
effect in the traffic intensity. In our tests R was set to 0.2. 

Besides the above commented scenarios, three larger 
scenarios based on more realistic networks are studied: 
the Abilene (N = 11), NSFNET (N = 14) and 15-node 
worldwide networks. In these three cases, the physical 
topologies span over several time zones in order to 
investigate the temporal mismatch of the most loaded 
traffic hour.  

In the Abilene network scenario, we used data from a 
real traffic trace, publicly available at  [1]. This data 
consists of traffic matrices spanning several weeks. Thus, 
we averaged all values of the trace taken at the same time 
in the day to obtain a sequence of 24 matrices illustrating 
typical hourly fluctuations in a day.  

For the NSF net case, a unique multi-hour sequence 
was generated using the aforementioned model described 
in equations (17)-(18), using as basis matrix b, the 
reference matrix in  [34].  As before, R was set to 0.2. 

Finally, the last scenario corresponds to synthetic 
multi-hour traffic generated for a 15-node worldwide 
network. The physical topology is described in Table I 
and Fig. 3. The traffic was generated using the multi-hour 
model proposed in  [33], for which the traffic between two 
nodes is proportional to the product of the two node 
populations; the variation of the traffic activity along the 

day in a node evolves according to expression (18); and, 
the traffic demand between a pair of nodes depends of the 
activity of both end nodes.  

In all the scenarios, the sequences of traffic matrices 
were normalized by multiplying them with a 
normalization factor (nf) given in equation (19). Value nf 
was calculated such that the average traffic between two 
nodes in the most loaded time slot is equal to ρ·C, where 
C is the lightpath capacity, and ρ is a traffic load 
parameter. The values tested in our study were for 
ρ = {0.1, 1, 10}. A value of ρ = 0.1 corresponds to the 
case when the average traffic between two nodes in the 
most loaded time slot is only 10% of a single lightpath 
capacity. On the contrary, a value of ρ = 10 captures 
cases in which the average traffic between two nodes in 
the most loaded time slot is the capacity of ten lightpaths.  

 

 






ji

t
ij

t

t
ij

t
ij

m

Cnn
nf

tjinfmh

,
max

)1(
)(where

,,                    ),(





 (19) 

 

 

Figure 3. 15-node Worldwide Network Topology. 

 

TABLE I. 
DATA OF 15-NODE WORLDWIDE NETWORK TOPOLOGY. 

Node Name Population Timezone 
1 Honolulu 378155 -11 
2 Los Angeles 3789981 -8 
3 Vancouver 545671 -8 
4 Chicago 2886251 -6 
5 New York 8084316 -5 
6 London 6638109 0 
7 Cape Town 2415408 1 
8 Paris 2125246 1 
9 Athens 745514 2 
10 Moscow 10101500 3 
11 New Delhi 12791458 4 
12 Beijing 13820000 7 
13 Singapore 4017733 7 
14 Tokyo 8134688 8 
15 Sydney 3997321 9 
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Tables II and III summarize all the performed tests. In 
Table II, the heuristic approaches are studied for each of 
the small networks (N = {4, 6, 8}) with synthetic traffic. 
For each network size N and network load ρ, we 
generated five independent sequences of traffic matrices. 
The columns correspond to: 
 
 LB: lower bounds (LB) on the optimal number of 

transceivers in the network computed, calculated as: 
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where LBTX and LBRX are computed according to (8) 
and (9). 
 

 MILP: exact solutions of the MILP formulation (1), 
for those cases where the solver found a solution.  

 TS: approximate solutions provided by the TS 
approach. The stopping criterion was fixed to 20 
iterations without improving the best solution found 
and the size of the tabu list was set to 3, 4 and 5, 
respectively.  

 LR: approximate solutions provided by the LR 
approach. The total number of iterations was set to 
1000 (although the best solution was reached after 50 
iterations). The initial and minimal values of step-
size parameter p were fixed to 2 and 0.005, 
respectively; and, the maximum number of iterations 
without improvement to halve p was set to 10. 

 
In all the approaches, the cost of one transceiver (c1) 

was fixed to 1, whereas the cost of reconfiguring a 
lightpath c2 was set to a sufficiently small fraction (~10-5) 
of the cost c1, so that the cost of the transceivers 
dominates the optimization, minimizing the number of 
transceivers as main objective.  

Each cell in Table II shows the average number of 
transceivers used in the solutions obtained for each of the 
five sequences corresponding to the same network and 
load ρ. In parenthesis, we include the number of 
reconfigurations, averaged over the five sequences. The 
cells marked with (-/-) represent cases where the 
associated approach was not able to obtain a solution in 
reasonable time (250000 s ≈ 3 days).  
 

 
 
Table III collects the results for the scenarios based on 

realistic networks: Abilene, NSFNET and the 15-node 
worldwide network. Herein, for each network and a 
network load ρ, a unique multi-hour traffic sequence is 
used. The columns of Table III are the same as Table II, 
excepting the MILP column. In this case, the formulation 
(1) becomes intractable for the network sizes. On the 
other hand, the same values as Table I were used for the 
algorithm parameters, apart from the size of the tabu list 
in TS. This parameter was set to 7, 8 and 9 for the 11-
node Abilene network, 14-node NSFNET network and 
the 15-node worldwide networks, respectively.  

The results in both tables show that TS outperforms 
LR in terms of the number of transceivers, while, with 
respect to reconfiguration frequency, LR obtains similar 
results for high loads; and, generally better results for 
medium and low loads. However, these solutions require 
significantly more transceivers (between 25% and 234%) 
with respect to the TS solutions. These extra transceivers 
enable a VTD reconfigurable design with fewer 
reconfigurations. Furthermore, we can observe that the 
transceiver performance of LR versus TS worsens with 
load parameter ρ.  

Finally, the optimality of the TS solutions in terms of 
the number of transceivers (total transceiver cost) is 
studied in Tables IV and V for small and large networks, 
respectively. In Table IV, two sub-optimality gaps are 
computed with respect to: (i) the optimal MILP solutions 
for four-, six- and eight-node networks (Gap TS-MILP); 
and, (ii) the lower bounds (Gap TS-LB) for all the 
networks. In Table V, the sub-optimality gaps with 
respect to the lower bounds (Gap TS-LB) are the only 
one. The analysis of these gaps in the tables confirm that 
TS is able to provide good approximate solutions for 
loads ρ = 1 and ρ = 10 in general; and, even quasi-
optimal solutions for ρ = 10 and for small sized networks. 
However, for a load of ρ = 0.1 and large networks 
(N ≥ 8), it is difficult to conclude whether the lower 
bound is weak or the heuristic solutions are far from 
optimal, as the suboptimal Gap TS-LB is not negligible 
and exact MILP solutions were not able to finish for all 
the cases. Moreover, the only two low load cases (N = 4, 
N = 6) where both gaps are available are contradictory, 
making it hard to assess the weakness of the lower 
bounds. For N = 4, the optimal solutions and lower 
bounds were equal; whereas for N = 6, the optimal 
solutions were one third larger than the lower bounds.  

TABLE III. 
NUMBER OF TRANSCEIVERS (AND RECONFIGURATIONS) OBTAINED FOR 

LARGE NETWORK SCENARIOS 

Network ρ LB TS LR 

Abilene  
 (N=11) 

0.1 36 52 (201) 93 (40) 
1 248 260 (219) 369 (97) 
10 2385 2392 (1078) 2497 (1048) 

NSF 
 (N=14) 

0.1 56 235 (574) 309 (483) 
1 406 424 (550) 585 (301) 
10 3959 3972 (3855) 4132 (3879) 

Worldwide 
 (N=15) 

0.1 66 104 (499) 290 (210) 
1 506 516 653) 774 (232) 
10 4920 4924 (3331) 5134 (3092) 

TABLE II. 
NUMBER OF TRANSCEIVERS (AND RECONFIGURATIONS) OBTAINED FOR 

SMALL NETWORK SCENARIOS 

N ρ LB MILP TS LR 

4 
0.1 8 8 (1.2) 8 (45.6) 21.4 (34.8) 
1 28.2 28.2 (0.4)  28.4 (35.2) 36.6 (15.2) 
10 263.8 263.8 (7.4) 266.6 (237.2) 272.2 (235.2) 

6 
0.1 12 16 (1.2) 18.4 (96.4) 54.8 (152.6) 
1 71.2 71.8 (4.4) 71.8 (91.6) 91.4 (34.8) 
10 654.2 656.6 (17.8) 662 (616.6) 679.2 (612.8) 

8 
0.1 16 - (-) 31.6 (147.8) 105.6 (313.4) 
1 127.6 129.8 (5.2) 132.6 (172.2) 167.2 (74.6) 
10 1199.8 1203.2 (71.6) 1212.6 (1141.8) 1249.8 (1143) 
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VI. CONCLUSIONS 

In this paper, two heuristic algorithms based on a 
Lagrangean Relaxation (LR) and a Tabu Search (TS) 
approach are proposed to solve the Reconfigurable Multi-
Hour Virtual Topology Design (MH-VTD-R) problem 
assuming two optimization criterions. Both the number of 
optical transceivers required at the nodes and the number 
of lightpath reconfigurations necessary to handle the 
traffic variations over time are minimized as primary and 
secondary objectives, respectively. 

Several test cases are conducted to compare the 
performance of the two proposed algorithms. The results 
reveal the superiority of the TS approach with respect to 
the LR approach in terms of reconfiguration cost. 
However, LR improves upon TS with respect to 
reconfiguration performance. 

Additionally, the optimality of the heuristic solutions 
found by the proposed approaches is compared with (i) 
analytical lower bounds for all the cases; and (ii) exact 
MILP solutions, for small networks. From these studies, 
the excellent sub-optimality of the TS solutions in terms 
of number of transceiver for middle and high traffic loads 
is demonstrated, while for low loads results are 
inconclusive due to presumably weak analytical bounds. 
This sub-optimality, however, comes at the cost of higher 
reconfiguration frequency.  
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