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Abstract

Given a graph G(V,E), a set of traffic matrices H and one additional traffic matrix h, we say

that H totally dominates h if for each capacity reservation u supporting H, u also supports

h using the same routing pattern. It has been shown that if |H| = 1 and G is a complete

graph, H totally dominates h if, and only if, ĥ ≥ h component-wise. In this paper we give

a generalized condition for |H| ≥ 1 and any connected undirected graph.
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1. Introduction

In the paper we generalize the following necessary and sufficient condition for traffic

domination presented in [5]. Given a graph G(V,E), and two traffic matrices ĥ and h, ĥ

totally dominates h (ĥ � h in short) if for each capacity reservation u : E 7→ R+ and for

each flow pattern f : P 7→ R+ (where P is the set of routing paths) such that (u, f) supports

matrix ĥ, the solution (u, f) does also support matrix h. Paper [5] shows that for a fully

connected graph G, ĥ � h if, and only if, ĥ ≥ h component-wise.

We consider a more general definition involving a set of (non-simultaneous) traffic ma-

trices H and one additional traffic matrix h. We say that H totally dominates h (H � h) if

for each pair (u, f) supporting every matrix in H, the pair (u, f) does also support matrix

h. After introducing basic definitions in Section 2, in Section 3 we generalize the sufficient
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condition of [5] by showing that if there exists a convex combination ĥ of the matrices in

H such that ĥ ≥ h, then H � h. In the same section we demonstrate that if G possesses a

certain technical property, the condition is also necessary. Then, in Section 4, we show that

the property is fulfilled by 2-connected undirected graphs which leads to the main result of

the paper: in 2-connected graphs H � h if, and only if, there exists a convex combination

ĥ of the matrices in H such that ĥ ≥ h. This characterization does extend to connected

graphs (not necessarily 2-connected), but requires some adjustment of the involved traffic

matrices H and h, as we finally demonstrate in Section 5.

We wish to mention that the reference paper [5] deals also with other types of traffic

domination, in particular with the case when different flow patterns can be used for different

traffic matrices, and gives a necessary and sufficient condition for this type of domination

in fully connected networks. This case is not considered in our paper.

2. Definition of total domination

We assume that we are given an undirected graph G = G(V,E) with the set of nodes V

and the set of undirected links E. A capacity reservation u : E → R+ specifies for each link

e ∈ E the amount of capacity u(e) installed on e. In the sequel, the value u(e) will be denoted

by ue, and function u will be represented by the capacity reservation vector u = (ue, e ∈ E).

Further, we suppose that we are given an ordered set D of demands. Each demand d ∈ D

is identified by its end nodes s(d) and t(d) (without loss of generality, s(d) 6= t(d)). Note

that there can be more than one demand between the same pair of nodes (or no demand at

all), so D is indeed a multiset. A function h : D → R+ specifies for each demand d ∈ D

its traffic volume h(d). Denoting h(d) by hd we form the traffic vector h = (hd, d ∈ D)

that will represent function h. If h and h′ are both traffic vectors, when we write h ≥ h′,

we mean that hd ≥ h′d, for each d ∈ D. (We prefer to use the notion of the traffic vector

instead of the traffic matrix used in the introduction.)

We also assume that we are given, for each demand d ∈ D, a set Pd of elementary

paths between s(d) and t(d) that we call admissible (a path is elementary if all its nodes

are different; observe that an elementary path p can be identified with the set of its links,
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i.e., p ⊆ E). Note that different sets of admissible paths can be given for a demand d and a

demand d′ that share the same end of nodes. It is convenient to think of Pd as a given subset

of elementary paths between s(d) and t(d), that have been selected for carrying traffic of

demand d. Finally, we let Qed ⊆ Pd be the set of all admissible paths for demand d that

contain link e: Qed = {p ∈ Pd : e ∈ p}.

Given the set of demands D and, for each d ∈ D, the set Pd of admissible paths, a flow

pattern f specifies the (fractional) flow fdp ∈ R+ assigned for each d ∈ D to each path

p ∈ Pd, and will be identified with the vector f = (fdp, d ∈ D, p ∈ Pd). For any flow pattern

we require that
∑

p∈Pd
fdp = 1, d ∈ D, so that for a given demand d the values fdp, p ∈ Pd,

specify the fractions of the demand volume hd assigned to the paths in Pd for each d ∈ D.

Consider a finite set of traffic vectors H = {ht : t ∈ T} to be supported by the network,

and one additional traffic vector h = (hd, d ∈ D). Set H can represent |T | different traffic

vectors observed at different hours, or a set of observed realizations of a random traffic

vector. For every ht, t ∈ T , its traffic volume for demand d ∈ D is denoted by ht
d so that

ht = (ht
d, d ∈ D).

We say that a capacity reservation u and a flow pattern f , defined on the given graph

G, support a set of traffic vectors H with respect to the given family of admissible path sets

P = {Pd : d ∈ D}, if the link loads induced by f do not exceed link capacity reservations

for any traffic matrix in H, i.e., when (u, f) satisfy the following linear constraints:∑
p∈Pd

fdp = 1, d ∈ D (1a)

∑
d∈D

∑
p∈Qed

ht
dfdp ≤ ue, e ∈ E, t ∈ T (1b)

fdp ≥ 0, d ∈ D, p ∈ Pd. (1c)

For a given family of admissible path sets P and a set of traffic vectors H, the feasible set

of (u, f) defined by (1) (a polyhedron in R|E|+
∑

d∈D |Pd|
+ ) will be abbreviated by PP(H).

Now, we are ready to introduce a formal definition of total domination, extending the

one from [5] to a set of traffic vectors H (instead of a single traffic vector).
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Definition 1. Let P = {Pd : d ∈ D} be a given family of admissible path sets in an

arbitrary graph G(V,E). We say that H totally dominates h with respect to P (H �P h in

short) if, and only if, each feasible solution in PP(H) is also a feasible solution in PP({h}),

i.e., if, and only if, PP(H) ⊆ PP({h}).

(In the sequel we will skip subscript P in PP and in �P when the family P of admissible

path sets is fixed. We will also write PP(h) instead of PP({h}).)

Observe that our setting for the flow patterns corresponds to what is called oblivious

[1], or stable [2], or static [3] routing, that is, it assumes splitting the demand volumes to

admissible paths in the same proportion for any traffic vector. As already mentioned, traffic

vector dependent (i.e., dynamic) flow patterns could as well be considered in the context of

traffic domination (see [5]).

3. A sufficient and a necessary condition for total domination

The following sufficient condition for total domination holds for an arbitrary (undirected)

graph G(V,E) with an arbitrary demand set D.

Proposition 1. Consider a set of traffic vectors H and an additional traffic vector h. As-

sume that there exists ĥ ∈ conv(H) such that ĥ ≥ h. Then H totally dominates h with

respect to any family of admissible path sets P.

Above, conv(H) denotes the set of all convex combinations of the vectors in H (recall that

each traffic vector is indeed a function h : D → R+). The proof of Proposition 1 consists in

showing that if (u, f) ∈ PP(H), then also (u, f) ∈ PP(ĥ) and (u, f) ∈ PP(h), and is based

on standard convexity arguments.

The sufficient condition for total domination given in Proposition 1 is in general not

necessary, as illustrated in Fig.1 depicting a 3-node, 2-link graph with three demands

{1, 3}, {1, 2}, {2, 3}, and with the family of admissible path sets P = {{123}, {12}, {23}}.

Assume H = {ĥ}, ĥ = (1, 0, 0) (ĥ13 = 1, ĥ12 = ĥ23 = 0), and h = (0, 1, 1) (h13 = 0, h12 =

h23 = 1). Since the network is a tree, only one flow pattern f exists and trivially every pair
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Figure 1: A two-link network.

(u, f) supporting ĥ also supports h. Hence, ĥ totally dominates h with respect to P , and,

in fact, vice versa. Still, neither ĥ ≥ h nor h ≥ ĥ.

Below we will derive a (technical) property of the family P under which the condition

∃ ĥ ∈ conv(H), ĥ ≥ h of Proposition 1 is also necessary for the total domination H �P h.

Proposition 2. Let H and h be as in Proposition 1 and suppose that a family P = {Pd :

d ∈ Pd} of admissible path sets is given. Suppose also that there exists a link ê ∈ E (the

so called enabling link) with the following property: for every demand d ∈ D there exists a

path p′ ∈ Pd such that ê ∈ p′ and a path p′′ ∈ Pd such that ê /∈ p′′.

Under these assumptions, if H totally dominates h with respect to P, then there exists

ĥ ∈ conv(H) such that ĥ ≥ h.

Proof. Consider an enabling link ê ∈ E and the following linear programming (LP) problem

specified on polyhedron PP(H) (see (1)):

minimize uê −
∑
d∈D

∑
p∈Qêd

hdfdp (2a)

[αet]
∑
d∈D

∑
p∈Qed

ht
dfdp − ue ≤ 0, e ∈ E, t ∈ T (2b)

[γd]
∑
p∈Pd

fdp = 1, d ∈ D (2c)

fdp ≥ 0, d ∈ D, p ∈ Pd (2d)

Using the dual variables specified in the square parentheses, the problem dual to (2) can be
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written down as:

maximize
∑
d∈D

γd (3a)

∑
t∈T

αet = 0, e ∈ E \ {ê} (3b)

∑
t∈T

αêt = 1 (3c)

αet ≥ 0, e ∈ E, t ∈ T (3d)

γd + hd ≤
∑
t∈T

αêth
t
d, d ∈ D : Qêd 6= ∅ (3e)

γd ≤ 0, d ∈ D : Pd \ Qêd 6= ∅. (3f)

Note that we can write (3e) and (3f) in this form since it follows from (3b) and (3d) that

αet = 0 for every e 6= ê and t ∈ T . Let (α∗, γ∗) be an optimal solution of (3). Because link

ê is enabling, ∀ d ∈ D, Qêd 6= ∅ and ∀ d ∈ D, Pd \ Qêd 6= ∅. The latter condition and

inequality (3f) imply that γ∗d ≤ 0 for all d ∈ D. Further, we have that
∑

d∈D γ
∗
d ≥ 0, since

optimal objective (3a) of the dual is equal to optimal objective (2) of the primal, and the

latter is non-negative by the assumption H �P h. Hence, γ∗d = 0 for all d ∈ D. This, the

condition ∀ d ∈ D, Pd \ Qêd 6= ∅, and (3e) imply that for all d ∈ D, hd ≤
∑

t∈T α
∗
êth

t
d.

Hence, thanks to (3c) and (3d), total domination implies existence of a convex combina-

tion ĥ =
∑

t∈T α
∗
êth

t
d of the vectors in H such that ĥ ≥ h.

4. A necessary and sufficient condition for two-connected networks

An undirected graph G(V,E) is called 2-connected if it has at least three nodes and

does not contain any cut vertex, i.e., any vertex v ∈ V such that G \ v has more connected

components than G. (Below, we follow definitions and results given in Chapter 11 of [4].)

Proposition 3. Suppose that an undirected graph G is 2-connected and that for every d ∈ D

the admissible set Pd contains all elementary paths between nodes s(d) and t(d). Then

H � h ⇔ ∃ ĥ ∈ conv(H), ĥ ≥ h. (4)
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Proof. 2-connected graphs enjoy the two following properties: (i) G is 2-connected if, and

only if, any two nodes v, w ∈ V are connected by two node disjoint paths ([4], Theorem

11.1.1), and (ii) G is 2-connected if, and only if, for any two nodes v, w ∈ V and link e ∈ E

there exists an elementary path between v and w containing link e ([4], Theorem 11.3.1).

These properties imply that in a 2-connected graph each link ê ∈ E is enabling for any

demand set D when, as assumed, each set Pd (d ∈ D) contains all elementary paths between

s(d) and t(d). Consider a fixed link ê and an arbitrary demand d ∈ D. There must be a path

p ∈ Pd such that ê /∈ p. Otherwise, all elementary paths for d would contain ê, contradicting

property (i). Also, by property (ii), there must be a path p′ ∈ Pd such that ê ∈ p′.

We observe that when graph G is composed of a single link (i.e., isomorphic to K2) and

thus not 2-connected, then (4) is not true when there are multiple demands between the two

nodes of the graph. In this case the following obvious property holds instead.

Proposition 4. Suppose that an undirected graph G is composed of a single link. Then

H � h ⇔ ∃ ĥ ∈ conv(H),
∑
d∈D

ĥd ≥
∑
d∈D

hd.

5. General characterization of total domination

In this section we will present the main result of the paper – a general necessary and

sufficient condition for total domination in an arbitrary undirected connected graph.

A connected undirected graph G containing cut vertices is called separable. The maximal

induced subgraphs of G that are not separable are called blocks. A block is either 2-connected

or is isomorphic to K2. The blocks of a graph are unique. Any two blocks intersect in at

most one node and this node must be a cut vertex. Two nodes are in the same block if, and

only if, they are connected by a path not traversing a cut vertex. Finally, any cycle must

be contained in a block (see [4], page 338).

Consider a connected separable undirected graph G = G(V,E) with the demand set D.

Suppose that graph G is composed of B blocks Gb = Gb(V b, Eb), b ∈ B. Clearly, each

elementary path between a given pair of nodes traverses the same sequence of blocks and
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the same sequence of cut vertices (otherwise, there would be a cycle not contained in a single

block). The set of the cut vertices traversed by the paths between the end nodes of demand

d ∈ D will be denoted by C(d). We treat each block as a separate graph Gb with its own

set of demands Db and the family of admissible path sets Pb = {Pb
d : d ∈ Db}, induced

respectively by D and P = {Pd : d ∈ D}). The demand set for a block is induced by the

overall demand set in a natural way: the demands of block b are all those demands in D

that either have both end nodes in V b, or only one end in V b (that is not a cut vertex), or

both ends outside V b. More precisely, Db = Db
0 ∪Db

1 ∪Db
2 (with a slight abuse of notation

since these sets are indeed multisets) where:

Db
0 = {d ∈ D : |{s(d), t(d)} ∩ V b| = 0, |C(d) ∩ V b| = 2}

Db
1 = {d ∈ D : |{s(d), t(d)} ∩ V b| = 1, |{s(d), t(d)} ∩ (V b \ C(d))| = 1, |C(d) ∩ V b| = 1}

Db
2 = {d ∈ D : |{s(d), t(d)} ∩ V b| = 2}.

Note that in block b, the end nodes of the demands in Db
0 and Db

1 are defined as follows:

{sb(d), tb(d)} = C(d) ∩ V b, d ∈ Db
0

{sb(d), tb(d)} = (V b ∩ {s(d), t(d)}) ∪ (V b ∩ C(d)), d ∈ Db
1.

The induced admissible path set Pb
d for a d ∈ Db is composed of the sub-paths of the paths

in Pd traversing Gb. (Note that a path in Pb
d can be induced by more than one path in Pd.)

A traffic vector h in G induces a traffic vector hb in Gb by assuming hb
d = hd, d ∈ Db.

Similarly, a set H of traffic vectors in G induces a set of traffic vectors Hb = {hb : h ∈ H}.

Also, a capacity reservation vector u defined in G induces a capacity reservation vector ub

defined in Gb by assuming ub
e = ue, e ∈ Eb. Finally a flow pattern f in G induces a flow

pattern f b in Gb as follows:

f b
dp =

∑
q∈Pd, p⊆q

fdq, d ∈ Db, p ∈ Pb
d. (5)

Note that the so defined mapping (u, f) 7→ ((ub, f b), b ∈ B) preserves capacity reservation

(by definition) and, for an arbitrary traffic vector h in G, the link loads, since (5) implies∑
d∈D

∑
q∈Qed

hdfdq =
∑
d∈Db

∑
p∈Qb

ed

hb
df

b
dp, e ∈ Eb, b ∈ B.
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Hence, if (u, f) supports h in G, then (ub, f b) supports hb in every block b ∈ B, i.e., if

(u, f) ∈ PP(h), then (ub, f b) ∈ Pb
Pb(h

b), where polyhedron PP(h) is defined by (1) for G, P

and h, and polyhedra Pb
Pb(h

b) are defined by (1) for Gb, Pb and hb (b ∈ B).

Lemma 5. Consider a connected undirected graph G split into blocks Gb, b ∈ B. Let H be a

set of traffic matrices, and let h be an additional traffic vector in G. Then,

H �P h⇔ ∀ b ∈ B, Hb �Pb hb. (6)

Proof. (⇒) Assume that H �P h and consider, for some b ∈ B, a solution (u(b), f(b)) ∈

Pb
Pb(Hb). Omitting the details, we observe that it is straightforward to construct a solution

(u, f) ∈ PP(H) (provided PP(H) is not empty) such that ub = u(b) and f b = f(b). By

assumption, (u, f) supports h and hence (ub, f b) supports hb. Thus, Hb �Pb hb.

(⇐) Assume that for every b ∈ B, Hb �P hb and consider a solution (u, f) ∈ PP(H), i.e.,

(u, f) ∈ PP(h̄) for every h̄ ∈ H. It follows that every (ub, f b) supports each h̄b ∈ Hb and

therefore, by assumption, (ub, f b) supports hb. Due to (6), this means that (u, f) supports

h.

Since the blocks b ∈ B are 2-connected (denote the set of such blocks by B′) or isomorphic

to K2 (denote the set of such blocks by B′′), Lemma 5, Proposition 3 and Proposition 4 lead

to the main result of the paper:

Proposition 6. If the admissible path sets Pd, d ∈ D are composed of all elementary paths

in a connected undirected graph G then H � h if, and only, if

(∀ b ∈ B′ ∃ ĥb ∈ conv(Hb), ĥb ≥ hb) ∧ (∀ b ∈ B′′ ∃ ĥb ∈ conv(Hb),
∑
d∈Db

ĥb
d ≥

∑
d∈Db

hb
d).

In the example from Fig.1, the graph is split into two one-link blocks G1 and G2 with V 1 =

{1, 2} and V 2 = {2, 3}, and the adjusted traffic vectors are: ĥ1 = (1, 0), h1 = (0, 1), ĥ2 =

(1, 0), h2 = (0, 1). Hence, ĥ � h because (as required by Proposition 4) ĥ1
1 + ĥ1

2 ≥ h1
1 + h1

2

for G1, and ĥ2
1 + ĥ2

2 ≥ h2
1 + h2

2 for G2 (and vice versa, h � ĥ because h1
1 + h1

2 ≥ ĥ1
1 + ĥ1

2 on

G1 and h2
1 + h2

2 ≥ ĥ2
1 + ĥ2

2 on G2).
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